Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Structure ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38531363

RESUMO

GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.

2.
Nat Struct Mol Biol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388830

RESUMO

The RAS-MAPK pathway regulates cell proliferation, differentiation and survival, and its dysregulation is associated with cancer development. The pathway minimally comprises the small GTPase RAS and the kinases RAF, MEK and ERK. Activation of RAF by RAS is notoriously intricate and remains only partially understood. There are three RAF isoforms in mammals (ARAF, BRAF and CRAF) and two related pseudokinases (KSR1 and KSR2). RAS-mediated activation of RAF depends on an allosteric mechanism driven by the dimerization of its kinase domain. Recent work on human RAFs showed that MEK binding to KSR1 promotes KSR1-BRAF heterodimerization, which leads to the phosphorylation of free MEK molecules by BRAF. Similar findings were made with the single Drosophila RAF homolog. Here we show that the fly scaffold proteins CNK and HYP stabilize the KSR-MEK interaction, which in turn enhances RAF-KSR heterodimerization and RAF activation. The cryogenic electron microscopy structure of the minimal KSR-MEK-CNK-HYP complex reveals a ring-like arrangement of the CNK-HYP complex allowing CNK to simultaneously engage KSR and MEK, thus stabilizing the binary interaction. Together, these results illuminate how CNK contributes to RAF activation by stimulating the allosteric function of KSR and highlight the diversity of mechanisms impacting RAF dimerization as well as the regulatory potential of the KSR-MEK interaction.

3.
Protein Sci ; 33(1): e4824, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945533

RESUMO

The atomic-resolution structural information that X-ray crystallography can provide on the binding interface between a Fab and its cognate antigen is highly valuable for understanding the mechanism of interaction. However, many Fab:antigen complexes are recalcitrant to crystallization, making the endeavor a considerable effort with no guarantee of success. Consequently, there have been significant steps taken to increase the likelihood of Fab:antigen complex crystallization by altering the Fab framework. In this investigation, we applied the surface entropy reduction strategy coupled with phage-display technology to identify a set of surface substitutions that improve the propensity of a human Fab framework to crystallize. In addition, we showed that combining these surface substitutions with previously reported Crystal Kappa and elbow substitutions results in an extraordinary improvement in Fab and Fab:antigen complex crystallizability, revealing a strong synergistic relationship between these sets of substitutions. Through comprehensive Fab and Fab:antigen complex crystallization screenings followed by structure determination and analysis, we defined the roles that each of these substitutions play in facilitating crystallization and how they complement each other in the process.


Assuntos
Complexo Antígeno-Anticorpo , Fragmentos Fab das Imunoglobulinas , Humanos , Cristalização/métodos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/química , Complexo Antígeno-Anticorpo/química , Antígenos/química , Cristalografia por Raios X , Conformação Proteica
4.
Protein Sci ; 33(2): e4885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147466

RESUMO

Smurf1 and Smurf2 are two closely related member of the HECT (homologous to E6AP carboxy terminus) E3 ubiquitin ligase family and play important roles in the regulation of various cellular processes. Both were initially identified to regulate transforming growth factor-ß and bone morphogenetic protein signaling pathways through regulating Smad protein stability and are now implicated in various pathological processes. Generally, E3 ligases, of which over 800 exist in humans, are ideal targets for inhibition as they determine substrate specificity; however, there are few inhibitors with the ability to precisely target a particular E3 ligase of interest. In this work, we explored a panel of ubiquitin variants (UbVs) that were previously identified to bind Smurf1 or Smurf2. In vitro binding and ubiquitination assays identified a highly specific Smurf2 inhibitor, UbV S2.4, which was able to inhibit ligase activity with high potency in the low nanomolar range. Orthologous cellular assays further demonstrated high specificity of UbV S2.4 toward Smurf2 and no cross-reactivity toward Smurf1. Structural analysis of UbV S2.4 in complex with Smurf2 revealed its mechanism of inhibition was through targeting the E2 binding site. In summary, we investigated several protein-based inhibitors of Smurf1 and Smurf2 and identified a highly specific Smurf2 inhibitor that disrupts the E2-E3 protein interaction interface.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Sítios de Ligação
5.
Sci Rep ; 13(1): 3868, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890145

RESUMO

Understanding the molecular pathology of neurodevelopmental disorders should aid the development of therapies for these conditions. In MeCP2 duplication syndrome (MDS)-a severe autism spectrum disorder-neuronal dysfunction is caused by increased levels of MeCP2. MeCP2 is a nuclear protein that binds to methylated DNA and recruits the nuclear co-repressor (NCoR) complex to chromatin via an interaction with the WD repeat-containing proteins TBL1 and TBLR1. The peptide motif in MeCP2 that binds to TBL1/TBLR1 is essential for the toxicity of excess MeCP2 in animal models of MDS, suggesting that small molecules capable of disrupting this interaction might be useful therapeutically. To facilitate the search for such compounds, we devised a simple and scalable NanoLuc luciferase complementation assay for measuring the interaction of MeCP2 with TBL1/TBLR1. The assay allowed excellent separation between positive and negative controls, and had low signal variance (Z-factor = 0.85). We interrogated compound libraries using this assay in combination with a counter-screen based on luciferase complementation by the two subunits of protein kinase A (PKA). Using this dual screening approach, we identified candidate inhibitors of the interaction between MeCP2 and TBL1/TBLR1. This work demonstrates the feasibility of future screens of large compound collections, which we anticipate will enable the development of small molecule therapeutics to ameliorate MDS.


Assuntos
Transtorno do Espectro Autista , Receptores Citoplasmáticos e Nucleares , Animais , Proteínas Repressoras/genética , Luminescência , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteínas Nucleares/metabolismo
6.
J Am Chem Soc ; 145(13): 7123-7135, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961978

RESUMO

The design of PROteolysis-TArgeting Chimeras (PROTACs) requires bringing an E3 ligase into proximity with a target protein to modulate the concentration of the latter through its ubiquitination and degradation. Here, we present a method for generating high-accuracy structural models of E3 ligase-PROTAC-target protein ternary complexes. The method is dependent on two computational innovations: adding a "silent" convolution term to an efficient protein-protein docking program to eliminate protein poses that do not have acceptable linker conformations and clustering models of multiple PROTACs that use the same E3 ligase and target the same protein. Results show that the largest consensus clusters always have high predictive accuracy and that the ensemble of models can be used to predict the dissociation rate and cooperativity of the ternary complex that relate to the degrading activity of the PROTAC. The method is demonstrated by applications to known PROTAC structures and a blind test involving PROTACs against BRAF mutant V600E. The results confirm that PROTACs function by stabilizing a favorable interaction between the E3 ligase and the target protein but do not necessarily exploit the most energetically favorable geometry for interaction between the proteins.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Ubiquitinação
7.
Structure ; 30(12): 1615-1625.e4, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327972

RESUMO

CDK11 is a cyclin-dependent kinase that controls proliferation by regulating transcription, RNA splicing, and the cell cycle. As its activity is increasingly associated with cancer, CDK11 is an attractive target for the development of small-molecule inhibitors. However, the development of CDK11 inhibitors with limited off-target effects against other CDKs poses a challenge based on the high conservation of sequence across family members. OTS964 is notable as it displays a measure of specificity for CDK11 in cells. To understand the basis for OTS964's specificity for CDK11, we solved a 2.6 Å crystal structure of the CDK11 kinase domain bound to OTS964. Despite the absence of cyclin, CDK11 adopts an active-like conformation when bound to OTS964. We identified amino acids likely to contribute to the specificity of OTS964 for CDK11 and assessed their contribution to OTS964 binding by isothermal titration calorimetry (ITC) in vitro and by resistance to OTS964 in cells.


Assuntos
Quinases Ciclina-Dependentes , Quinolonas , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Ciclo Celular
8.
EMBO Rep ; 23(12): e55044, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36278408

RESUMO

FBXW7, which encodes a substrate-specific receptor of an SCF E3 ligase complex, is a frequently mutated human tumor suppressor gene known to regulate the post-translational stability of various proteins involved in cellular proliferation. Here, using genome-wide CRISPR screens, we report a novel synthetic lethal genetic interaction between FBXW7 and CCNL1 and describe CCNL1 as a new substrate of the SCF-FBXW7 E3 ligase. Further analysis showed that the CCNL1-CDK11 complex is critical at the G2-M phase of the cell cycle since defective CCNL1 accumulation, resulting from FBXW7 mutation, leads to shorter mitotic time. Cells harboring FBXW7 loss-of-function mutations are hypersensitive to treatment with a CDK11 inhibitor, highlighting a genetic vulnerability that could be leveraged for cancer treatment.


Assuntos
Ciclinas , Proteína 7 com Repetições F-Box-WD , Ubiquitina-Proteína Ligases , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Mutação , Ubiquitina-Proteína Ligases/genética , Ciclinas/metabolismo , Ubiquitinação
9.
J Med Chem ; 65(19): 13198-13215, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36126059

RESUMO

DNA polymerase theta (Polθ) is an attractive synthetic lethal target for drug discovery, predicted to be efficacious against breast and ovarian cancers harboring BRCA-mutant alleles. Here, we describe our hit-to-lead efforts in search of a selective inhibitor of human Polθ (encoded by POLQ). A high-throughput screening campaign of 350,000 compounds identified an 11 micromolar hit, giving rise to the N2-substituted fused pyrazolo series, which was validated by biophysical methods. Structure-based drug design efforts along with optimization of cellular potency and ADME ultimately led to the identification of RP-6685: a potent, selective, and orally bioavailable Polθ inhibitor that showed in vivo efficacy in an HCT116 BRCA2-/- mouse tumor xenograft model.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias Ovarianas , Animais , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Feminino , Humanos , Camundongos
10.
J Med Chem ; 65(19): 12725-12746, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36117290

RESUMO

Targeted protein degradation (TPD) strategies exploit bivalent small molecules to bridge substrate proteins to an E3 ubiquitin ligase to induce substrate degradation. Few E3s have been explored as degradation effectors due to a dearth of E3-binding small molecules. We show that genetically induced recruitment to the GID4 subunit of the CTLH E3 complex induces protein degradation. An NMR-based fragment screen followed by structure-guided analog elaboration identified two binders of GID4, 16 and 67, with Kd values of 110 and 17 µM in vitro. A parallel DNA-encoded library (DEL) screen identified five binders of GID4, the best of which, 88, had a Kd of 5.6 µM in vitro and an EC50 of 558 nM in cells with strong selectivity for GID4. X-ray co-structure determination revealed the basis for GID4-small molecule interactions. These results position GID4-CTLH as an E3 for TPD and provide candidate scaffolds for high-affinity moieties that bind GID4.


Assuntos
DNA , Ubiquitina-Proteína Ligases , DNA/metabolismo , Humanos , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
11.
J Med Chem ; 65(15): 10251-10284, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35880755

RESUMO

PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound 1 was identified as a weak PKMYT1 inhibitor. Introduction of a dimethylphenol increased potency on PKMYT1. These dimethylphenol analogs were found to exist as atropisomers that could be separated and profiled as single enantiomers. Structure-based drug design enabled optimization of cell-based potency. Parallel optimization of ADME properties led to the identification of potent and selective inhibitors of PKMYT1. RP-6306 inhibits CCNE1-amplified tumor cell growth in several preclinical xenograft models. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials for treatment of various solid tumors.


Assuntos
Neoplasias , Proteínas Tirosina Quinases , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Proteínas de Membrana , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases
12.
ACS Chem Biol ; 17(6): 1472-1484, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35613471

RESUMO

A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides. We used phage display to select a Fes-SH2 domain variant (superFes; sFes1) with high affinity for pTyr and solved its structure bound to a pTyr-peptide. We performed systematic structure-function analyses of the superbinding mechanisms of sFes1 and superSrc-SH2 (sSrc1), another SH2 superbinder. We grafted the superbinder motifs from sFes1 and sSrc1 into 17 additional SH2 domains and confirmed increased binding affinity for specific pTyr-peptides. Using mass spectrometry (MS), we demonstrated that SH2 superbinders have distinct specificity profiles and superior capabilities to enrich pTyr-peptides. Finally, using combinations of SH2 superbinders as affinity purification (AP) tools we showed that unique subsets of pTyr-peptides can be enriched with unparalleled depth and coverage.


Assuntos
Proteoma , Domínios de Homologia de src , Humanos , Espectrometria de Massas , Fosfotirosina/análise , Fosfotirosina/química , Fosfotirosina/metabolismo , Ligação Proteica , Proteoma/metabolismo
13.
Methods Enzymol ; 667: 729-773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525560

RESUMO

Bud32 is a member of the protein kinase superfamily that is invariably conserved in all eukaryotic and archaeal organisms. In both of these kingdoms, Bud32 forms part of the KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) complex together with the three other core subunits Kae1, Cgi121 and Pcc1. KEOPS functions to generate the universal and essential tRNA post-transcriptional modification N6-theronylcarbamoyl adenosine (t6A), which is present at position A37 in all tRNAs that bind to codons with an A in the first position (ANN decoding tRNAs) and is essential for the fidelity of translation. Mutations in KEOPS genes in humans underlie the severe genetic disease Galloway-Mowat syndrome, which results in childhood death. KEOPS activity depends on two major functions of Bud32. Firstly, Bud32 facilitates efficient tRNA substrate recruitment to KEOPS and helps in positioning the A37 site of the tRNA in the active site of Kae1, which carries out the t6A modification reaction. Secondly, the enzymatic activity of Bud32 is required for the ability of KEOPS to modify tRNA. Unlike conventional protein kinases, which employ their enzymatic activity for phosphorylation of protein substrates, Bud32 employs its enzymatic activity to function as an ATPase. Herein, we present a comprehensive suite of assays to monitor the activity of Bud32 in KEOPS in vitro and in vivo. We present protocols for the purification of the archaeal KEOPS proteins and of a tRNA substrate, as well as protocols for monitoring the ATPase activity of Bud32 and for analyzing its role in tRNA binding. We further present a complementary protocol for monitoring the role Bud32 has in cell growth in yeast.


Assuntos
Proteínas Arqueais , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/metabolismo , Humanos , Proteínas Quinases/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
ACS Chem Biol ; 17(4): 941-956, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35385646

RESUMO

Ubiquitin (Ub)-binding domains embedded in intracellular proteins act as readers of the complex Ub code and contribute to regulation of numerous eukaryotic processes. Ub-interacting motifs (UIMs) are short α-helical modular recognition elements whose role in controlling proteostasis and signal transduction has been poorly investigated. Moreover, impaired or aberrant activity of UIM-containing proteins has been implicated in numerous diseases, but targeting modular recognition elements in proteins remains a major challenge. To overcome this limitation, we developed Ub variants (UbVs) that bind to 42 UIMs in the human proteome with high affinity and specificity. Structural analysis of a UbV:UIM complex revealed the molecular determinants of enhanced affinity and specificity. Furthermore, we showed that a UbV targeting a UIM in the cancer-associated Ub-specific protease 28 potently inhibited catalytic activity. Our work demonstrates the versatility of UbVs to target short α-helical Ub receptors with high affinity and specificity. Moreover, the UbVs provide a toolkit to investigate the role of UIMs in regulating and transducing Ub signals and establish a general strategy for the systematic development of probes for Ub-binding domains.


Assuntos
Proteínas , Ubiquitina , Humanos , Ligação Proteica , Proteínas/metabolismo , Ubiquitina/metabolismo
16.
Nucleic Acids Res ; 49(19): 10818-10834, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614169

RESUMO

KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) is a five-subunit protein complex that is highly conserved in eukaryotes and archaea and is essential for the fitness of cells and for animal development. In humans, mutations in KEOPS genes underlie Galloway-Mowat syndrome, which manifests in severe microcephaly and renal dysfunction that lead to childhood death. The Kae1 subunit of KEOPS catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine (t6A), while the auxiliary subunits Cgi121, the kinase/ATPase Bud32, Pcc1 and Gon7 play a supporting role. Kae1 orthologs are also present in bacteria and mitochondria but function in distinct complexes with proteins that are not related in structure or function to the auxiliary subunits of KEOPS. Over the past 15 years since its discovery, extensive study in the KEOPS field has provided many answers towards understanding the roles that KEOPS plays in cells and in human disease and how KEOPS carries out these functions. In this review, we provide an overview into recent advances in the study of KEOPS and illuminate exciting future directions.


Assuntos
Adenosina/análogos & derivados , Proteína 1 de Troca de Ânion do Eritrócito/genética , Hérnia Hiatal/genética , Microcefalia/genética , Nefrose/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina/metabolismo , Animais , Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Archaea/genética , Archaea/metabolismo , Sequência Conservada , Regulação da Expressão Gênica , Hérnia Hiatal/metabolismo , Hérnia Hiatal/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microcefalia/metabolismo , Microcefalia/patologia , Modelos Moleculares , Nefrose/metabolismo , Nefrose/patologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Sci Adv ; 7(44): eabi5797, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705497

RESUMO

Pharmacological control of the ubiquitin-proteasome system (UPS) is of intense interest in drug discovery. Here, we report the development of chemical inhibitors of the ubiquitin-conjugating (E2) enzyme CDC34A (also known as UBE2R1), which donates activated ubiquitin to the cullin-RING ligase (CRL) family of ubiquitin ligase (E3) enzymes. A FRET-based interaction assay was used to screen for novel compounds that stabilize the noncovalent complex between CDC34A and ubiquitin, and thereby inhibit the CDC34A catalytic cycle. An isonipecotamide hit compound was elaborated into analogs with ~1000-fold increased potency in stabilizing the CDC34A-ubiquitin complex. These analogs specifically inhibited CDC34A-dependent ubiquitination in vitro and stabilized an E2~ubiquitin thioester reaction intermediate in cells. The x-ray crystal structure of a CDC34A-ubiquitin-inhibitor complex uncovered the basis for analog structure-activity relationships. The development of chemical stabilizers of the CDC34A-ubiquitin complex illustrates a general strategy for de novo discovery of molecular glue compounds that stabilize weak protein interactions.

18.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34287649

RESUMO

Aurora A is a serine/threonine kinase essential for mitotic entry and spindle assembly. Recent molecular studies have revealed the existence of multiple, distinct mechanisms of Aurora A activation, each occurring at specific subcellular locations, optimized for cellular context, and primed by signaling events including phosphorylation and oxidation.


Assuntos
Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Mitose , Processamento de Proteína Pós-Traducional , Regulação Alostérica , Animais , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Oxirredução , Fosforilação , Ligação Proteica , Transdução de Sinais , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
19.
J Mol Biol ; 433(18): 167115, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34171344

RESUMO

PDZ domains are key players in signalling pathways. These modular domains generally recognize short linear C-terminal stretches of sequences in proteins that organize the formation of complex multi-component assemblies. The development of new methodologies for the characterization of the molecular principles governing these interactions is critical to fully understand the functional diversity of the family and to elucidate biological functions for family members. Here, we applied an in vitro evolution strategy to explore comprehensively the capacity of PDZ domains for specific recognition of different amino acids at a key position in C-terminal peptide ligands. We constructed a phage-displayed library of the Erbin PDZ domain by randomizing the binding site-2 and adjacent residues, which are all contained in helix α2, and we selected for variants binding to a panel of peptides representing all possible position-2 residues. This approach generated insights into the basis for the common natural class I and II specificities, demonstrated an alternative basis for a rare natural class III specificity for Asp-2, and revealed a novel specificity for Arg-2 that has not been reported in natural PDZ domains. A structure of a PDZ-peptide complex explained the minimum requirement for switching specificity from class I ligands containing Thr/Ser-2 to class II ligands containing hydrophobic residues at position-2. A second structure explained the molecular basis for the specificity for ligands containing Arg-2. Overall, the evolved PDZ variants greatly expand our understanding of site-2 specificities and the variants themselves may prove useful as building blocks for synthetic biology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Domínios PDZ , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
20.
Structure ; 29(9): 975-988.e5, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33989513

RESUMO

Skp2 and cyclin A are cell-cycle regulators that control the activity of CDK2. Cyclin A acts as an activator and substrate recruitment factor of CDK2, while Skp2 mediates the ubiquitination and subsequent destruction of the CDK inhibitor protein p27. The N terminus of Skp2 can interact directly with cyclin A but is not required for p27 ubiquitination. To gain insight into this poorly understood interaction, we have solved the 3.2 Å X-ray crystal structure of the N terminus of Skp2 bound to cyclin A. The structure reveals a bipartite mode of interaction with two motifs in Skp2 recognizing two discrete surfaces on cyclin A. The uncovered binding mechanism allows for a rationalization of the inhibitory effect of Skp2 on CDK2-cyclin A kinase activity toward the RxL motif containing substrates and raises the possibility that other intermolecular regulators and substrates may use similar non-canonical modes of interaction for cyclin targeting.


Assuntos
Ciclina A/metabolismo , Proteínas Quinases Associadas a Fase S/química , Sítios de Ligação , Ciclina A/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Quinases Associadas a Fase S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...