Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559169

RESUMO

Alcohol use disorder is marked by disrupted behavioral and emotional states which persist into abstinence. The enduring synaptic alterations that remain despite the absence of alcohol are of interest for interventions to prevent relapse. Here, 28 male rhesus macaques underwent over 20 months of alcohol drinking interspersed with three 30-day forced abstinence periods. After the last abstinence period, we paired direct sub-second dopamine monitoring via ex vivo voltammetry in nucleus accumbens slices with RNA-sequencing of the ventral tegmental area. We found persistent augmentation of dopamine transporter function, kappa opioid receptor sensitivity, and dynorphin release - all inhibitory regulators which act to decrease extracellular dopamine. Surprisingly, though transcript expression was not altered, the relationship between gene expression and functional readouts of these encoded proteins was highly dynamic and altered by drinking history. These results outline the long-lasting synaptic impact of alcohol use and suggest that assessment of transcript-function relationships is critical for the rational design of precision therapeutics.

2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496533

RESUMO

The mesocortical dopamine system is comprised of midbrain dopamine neurons that predominantly innervate the medial prefrontal cortex (mPFC) and exert a powerful neuromodulatory influence over this region 1,2 . mPFC dopamine activity is thought to be critical for fundamental neurobiological processes including valence coding and decision-making 3,4 . Despite enduring interest in this pathway, the stimuli and conditions that engage mPFC dopamine release have remained enigmatic due to inherent limitations in conventional methods for dopamine monitoring which have prevented real-time in vivo observation 5 . Here, using a fluorescent dopamine sensor enabling time-resolved recordings of cortical dopamine activity in freely behaving mice, we reveal the coding properties of this system and demonstrate that mPFC dopamine dynamics conform to a selective attention signal. Contrary to the long-standing theory that mPFC dopamine release preferentially encodes aversive and stressful events 6-8 , we observed robust dopamine responses to both appetitive and aversive stimuli which dissipated with increasing familiarity irrespective of stimulus intensity. We found that mPFC dopamine does not evolve as a function of learning but displays striking temporal precedence with second-to-second changes in behavioral engagement, suggesting a role in allocation of attentional resources. Systematic manipulation of attentional demand revealed that quieting of mPFC dopamine signals the allocation of attentional resources towards an expected event which, upon detection triggers a sharp dopamine transient marking the transition from decision-making to action. The proposed role of mPFC dopamine as a selective attention signal is the first model based on direct observation of time-resolved dopamine dynamics and reconciles decades of competing theories.

3.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376907

RESUMO

Basal forebrain cholinergic neurons modulate how organisms process and respond to environmental stimuli through impacts on arousal, attention, and memory. It is unknown, however, whether basal forebrain cholinergic neurons are directly involved in conditioned behavior, independent of secondary roles in the processing of external stimuli. Using fluorescent imaging, we found that cholinergic neurons are active during behavioral responding for a reward - even prior to reward delivery and in the absence of discrete stimuli. Photostimulation of basal forebrain cholinergic neurons, or their terminals in the basolateral amygdala (BLA), selectively promoted conditioned responding (licking), but not unconditioned behavior nor innate motor outputs. In vivo electrophysiological recordings during cholinergic photostimulation revealed reward-contingency-dependent suppression of BLA neural activity, but not prefrontal cortex. Finally, ex vivo experiments demonstrated that photostimulation of cholinergic terminals suppressed BLA projection neuron activity via monosynaptic muscarinic receptor signaling, while also facilitating firing in BLA GABAergic interneurons. Taken together, we show that the neural and behavioral effects of basal forebrain cholinergic activation are modulated by reward contingency in a target-specific manner.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Neurônios Colinérgicos , Interneurônios , Recompensa
4.
Sci Adv ; 9(6): eadg6086, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753539

RESUMO

Opioid tolerance develops as a learned response to drug-associated cues and is thus a dynamic effect modulated by the interaction between drug and environment.


Assuntos
Analgésicos Opioides , Condicionamento Clássico , Analgésicos Opioides/farmacologia , Tolerância a Medicamentos , Aprendizagem , Sinais (Psicologia)
5.
Mol Psychiatry ; 28(4): 1585-1598, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849824

RESUMO

There is inherent tension between methodologies developed to address basic research questions in model species and those intended for preclinical to clinical translation: basic investigations require flexibility of experimental design as hypotheses are rapidly tested and revised, whereas preclinical models emphasize standardized protocols and specific outcome measures. This dichotomy is particularly relevant in alcohol research, which spans a diverse range of basic sciences in addition to intensive efforts towards understanding the pathophysiology of alcohol use disorder (AUD). To advance these goals there is a great need for approaches that facilitate synergy across basic and translational areas of nonhuman alcohol research. In male and female mice, we establish a modular alcohol reinforcement paradigm: Structured Tracking of Alcohol Reinforcement (STAR). STAR provides a robust platform for quantitative assessment of AUD-relevant behavioral domains within a flexible framework that allows direct crosstalk between translational and mechanistically oriented studies. To achieve cross-study integration, despite disparate task parameters, a straightforward multivariate phenotyping analysis is used to classify subjects based on propensity for heightened alcohol consumption and insensitivity to punishment. Combining STAR with extant preclinical alcohol models, we delineate longitudinal phenotype dynamics and reveal putative neuro-biomarkers of heightened alcohol use vulnerability via neurochemical profiling of cortical and brainstem tissues. Together, STAR allows quantification of time-resolved biobehavioral processes essential for basic research questions simultaneous with longitudinal phenotyping of clinically relevant outcomes, thereby providing a framework to facilitate cohesion and translation in alcohol research.


Assuntos
Alcoolismo , Etanol , Masculino , Feminino , Camundongos , Animais , Consumo de Bebidas Alcoólicas , Reforço Psicológico , Projetos de Pesquisa
6.
Neuropsychopharmacology ; 48(6): 857-868, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804487

RESUMO

Selective inhibition of kappa opioid receptors (KORs) is highly anticipated as a pharmacotherapeutic intervention for substance use disorders and depression. The accepted explanation for KOR antagonist-induced amelioration of aberrant behaviors posits that KORs globally function as a negative valence system; antagonism thereby blunts the behavioral influence of negative internal states such as anhedonia and negative affect. While effects of systemic KOR manipulations have been widely reproduced, explicit evaluation of negative valence as an explanatory construct is lacking. Here, we tested a series of falsifiable hypotheses generated a priori based on the negative valence model by pairing reinforcement learning tasks with systemic pharmacological KOR blockade in male C57BL/6J mice. The negative valence model failed to predict multiple experimental outcomes: KOR blockade accelerated contingency learning during both positive and negative reinforcement without altering innate responses to appetitive or aversive stimuli. We next proposed novelty processing, which influences learning independent of valence, as an alternative explanatory construct. Hypotheses based on novelty processing predicted subsequent observations: KOR blockade increased exploration of a novel, but not habituated, environment and augmented the reinforcing efficacy of novel visual stimuli in a sensory reinforcement task. Together, these results revise and extend long-standing theories of KOR system function.


Assuntos
Receptores Opioides kappa , Reforço Psicológico , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Aprendizagem , Condicionamento Clássico , Antagonistas de Entorpecentes/farmacologia
7.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38529503

RESUMO

Human and non-human primate data clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions 1,2 . It is thought that intracortical synaptic architectures within dlPFC are the integral neurobiological substrate that gives rise to these processes, including working memory, inferential reasoning, and decision-making 3-7 . In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the 'canonical' cortical microcircuit 3,8 . Each cortical microcircuit receives sensory and cognitive information from a variety of sources which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity 4,9 . Via recurrent connections within the microcircuit, activity can propagate for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output 4,5,10 . Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo where intercortical and intracortical computations cannot be fully dissociated 5,9,11,12 . Here, we interrogated the intrinsic features of isolated microcircuit networks using high-density calcium imaging of macaque dlPFC ex vivo . We found that spontaneous activity is intrinsically maintained by microcircuit architecture, persisting at a high rate in the absence of extrinsic connections. Further, using perisulcal stimulation to evoke persistent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks, creating predictable population-level events from largely non-overlapping ensembles. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture.

9.
Nat Neurosci ; 25(8): 1071-1081, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902648

RESUMO

Studies investigating the neural mechanisms by which associations between cues and predicted outcomes control behavior often use associative learning frameworks to understand the neural control of behavior. These frameworks do not always account for the full range of effects that novelty can have on behavior and future associative learning. Here, in mice, we show that dopamine in the nucleus accumbens core is evoked by novel, neutral stimuli, and the trajectory of this response over time tracked habituation to these stimuli. Habituation to novel cues before associative learning reduced future associative learning, a phenomenon known as latent inhibition. Crucially, trial-by-trial dopamine response patterns tracked this phenomenon. Optogenetic manipulation of dopamine responses to the cue during the habituation period bidirectionally influenced future associative learning. Thus, dopamine signaling in the nucleus accumbens core has a causal role in novelty-based learning in a way that cannot be predicted based on purely associative factors.


Assuntos
Dopamina , Núcleo Accumbens , Animais , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Dopamina/fisiologia , Memória , Camundongos , Núcleo Accumbens/fisiologia
10.
Nature ; 608(7923): 586-592, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859170

RESUMO

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Aprendizagem , Vias Neurais , Neurotensina , Punição , Recompensa , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Cálcio/metabolismo , Sinais (Psicologia) , Plasticidade Neuronal , Neurotensina/metabolismo , Optogenética , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia
11.
ACS Chem Neurosci ; 13(10): 1534-1548, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35482592

RESUMO

Fast-scan cyclic voltammetry (FSCV) is an effective tool for measuring dopamine release and clearance throughout the brain, especially the striatum where dopamine terminals are abundant and signals are heavily regulated by release machinery and the dopamine transporter (DAT). Peak height measurement is perhaps the most common method for measuring dopamine release, but it is influenced by changes in clearance. Michaelis-Menten-based modeling has been a standard in measuring dopamine clearance, but it is problematic in that it requires experimenter fitted modeling subject to experimenter bias. This study presents the use of the first derivative (velocity) of evoked dopamine signals as an alternative approach for measuring and distinguishing dopamine release from clearance. Maximal upward velocity predicts reductions in dopamine peak height due to D2 and GABAB receptor stimulation and by alterations in calcium concentrations. The Michaelis-Menten maximal velocity (Vmax) measure, an approximation for DAT levels, predicts maximal downward velocity in slices and in vivo. Dopamine peak height and upward velocity were similar between wild-type and DAT knock-out (DATKO) mice. In contrast, downward velocity was lower and exponential decay (tau) was higher in DATKO mice, supporting the use of both measures for extreme changes in DAT activity. In slices, the competitive DAT inhibitors cocaine, PTT, and WF23 increased peak height and upward velocity differentially across increasing concentrations, with PTT and cocaine reducing these measures at high concentrations. Downward velocity and tau values decreased and increased respectively across concentrations, with greater potency and efficacy observed with WF23 and PTT. In vivo recordings demonstrated similar effects of WF23, PTT, and cocaine on measures of release and clearance. Tau was a more sensitive measure at low concentrations, supporting its use as a surrogate for the Michaelis-Menten measure of apparent affinity (Km). Together, these results inform on the use of these various measures for dopamine release and clearance.


Assuntos
Cocaína , Dopamina , Animais , Cocaína/farmacologia , Corpo Estriado/metabolismo , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Camundongos , Ratos , Ratos Sprague-Dawley
12.
Eur J Neurosci ; 55(5): 1162-1173, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35141983

RESUMO

Heightened novelty-seeking phenotypes are associated with a range of behavioural traits including susceptibility to drug use. These relationships are recapitulated in preclinical models, where rats that exhibit increased exploratory activity in novel environments (high responders-HR) acquire self-administration of psychostimulants more rapidly compared to rats that display low novelty exploration (low responders-LR). Dopamine release dynamics in the nucleus accumbens (NAc) covaries with response to novelty, and differences in dopaminergic signalling are thought to be a major underlying driver of the link between novelty seeking and drug use vulnerability. Accumbal dopamine release is controlled by local microcircuits including modulation through glutamatergic and nicotinic acetylcholine receptor (nAChR) systems, but whether these mechanisms contribute to disparate dopamine signalling across novelty phenotypes is unclear. Here, we used ex vivo voltammetry in the NAc of rats to determine if α7 nAChRs contribute to differential dopamine dynamics associated with individual differences in novelty exploration. We found that blockade of α7 nAChRs attenuates tonic dopamine release evoked by low-frequency stimulations across phenotypes but that phasic release is decreased in LRs while HRs are unaffected. These stimulation frequency- and phenotype-dependent effects result in a decreased dynamic range of release exclusively in LRs. Furthermore, we found that differential α7 modulation of dopamine release in LRs is dependent on AMPA but not NMDA receptors. These results help to form an understanding of the local NAc microcircuitry and provide a potential mechanism for covariance of dopamine dynamics and sensitivity to the reinforcing effects of drugs of abuse.


Assuntos
Dopamina , Receptores Nicotínicos , Animais , Dopamina/farmacologia , Comportamento Exploratório , Núcleo Accumbens , Ratos , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
13.
Neuron ; 110(6): 1068-1083.e5, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35045338

RESUMO

Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.


Assuntos
Interneurônios , Somatostatina , Animais , Interneurônios/fisiologia , Potenciação de Longa Duração , Camundongos , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Somatostatina/metabolismo , Sinapses/fisiologia
14.
J Neurochem ; 160(6): 598-612, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34265080

RESUMO

Striatal dopamine release is key for learning and motivation and is composed of subregions including the dorsal striatum (DS), nucleus accumbens core, and the nucleus accumbens shell. Spontaneously occurring dopamine release was compared across these subregions. Dopamine release/uptake dynamics differ across striatal subregions, with dopamine transient release amplitude and release frequency greatest in male mice, and the largest signals observed in the DS. Surprisingly, female mice exhibited little regional differences in dopamine release for DS and nucleus accumbens core regions, but lower release in the nucleus accumbens shell. Blocking voltage-gated K+ channel (Kv channels) with 4-aminopyridine enhanced dopamine detection without affecting reuptake. The 4-aminopyridine effects were greatest in ventral regions of female mice, suggesting regional differences in Kv channel expression. The dopamine transporter blocker cocaine also enhanced detection across subregions in both sexes, with greater overall increased release in females than males. Thus, sex differences in dopamine transmission are apparent and likely include differences in the Kv channel and dopamine transporter function. The lack of regional differences in dopamine release observed in females indicates differential regulation of spontaneous and evoked dopamine release.


Assuntos
Cocaína , Dopamina , 4-Aminopiridina/metabolismo , Animais , Cocaína/metabolismo , Cocaína/farmacologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Antagonistas de Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Masculino , Camundongos , Núcleo Accumbens/metabolismo , Caracteres Sexuais
15.
Trends Neurosci ; 44(12): 1004-1015, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34702580

RESUMO

Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.


Assuntos
Alcoolismo , Etanol , Alcoolismo/tratamento farmacológico , Alcoolismo/genética , Alcoolismo/metabolismo , Encéfalo/metabolismo , Montagem e Desmontagem da Cromatina , Etanol/metabolismo , Etanol/farmacologia , Etanol/uso terapêutico , Humanos , Neurônios/metabolismo
16.
Curr Biol ; 31(21): 4748-4761.e8, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34529938

RESUMO

A large body of work has aimed to define the precise information encoded by dopaminergic projections innervating the nucleus accumbens (NAc). Prevailing models are based on reward prediction error (RPE) theory, in which dopamine updates associations between rewards and predictive cues by encoding perceived errors between predictions and outcomes. However, RPE cannot describe multiple phenomena to which dopamine is inextricably linked, such as behavior driven by aversive and neutral stimuli. We combined a series of behavioral tasks with direct, subsecond dopamine monitoring in the NAc of mice, machine learning, computational modeling, and optogenetic manipulations to describe behavior and related dopamine release patterns across multiple contingencies reinforced by differentially valenced outcomes. We show that dopamine release only conforms to RPE predictions in a subset of learning scenarios but fits valence-independent perceived saliency encoding across conditions. Here, we provide an extended, comprehensive framework for accumbal dopamine release in behavioral control.


Assuntos
Dopamina , Núcleo Accumbens , Animais , Sinais (Psicologia) , Camundongos , Optogenética , Recompensa
17.
J Clin Invest ; 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292886

RESUMO

Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.

19.
Int Rev Neurobiol ; 157: 371-407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33648674

RESUMO

Cognitive deficits are highly comorbid with substance use disorders. Deficits span multiple cognitive domains, are associated with disease severity across substance classes, and persist long after cessation of substance use. Furthermore, recovery of cognitive function during protracted abstinence is highly predictive of treatment adherence, relapse, and overall substance use disorder prognosis, suggesting that addiction may be best characterized as a disease of executive dysfunction. While the association between cognitive deficits and substance use disorders is clear, determining causalities is made difficult by the complex interplay between these variables. Cognitive dysfunction present prior to first drug use can act as a risk factor for substance use initiation, likelihood of pathology, and disease trajectory. At the same time, substance use can directly cause cognitive impairments even in individuals without preexisting deficits. Thus, parsing preexisting risk factors from substance-induced adaptations, and how they may interact, poses significant challenges. Here, focusing on psychostimulants and alcohol, we review evidence from clinical literature implicating cognitive deficits as a risk factor for addiction, a consequence of substance use, and the role the prefrontal cortex plays in these phenomena. We then review corresponding preclinical literature, highlighting the high degree of congruency between animal and human studies, and emphasize the unique opportunity that animal models provide to test causality between cognitive phenotypes and substance use, and to investigate the underlying neurobiology at a cellular and molecular level. Together, we provide an accessible resource for assessing the validity and utility of forward- and reverse-translation between these clinical and preclinical literatures.


Assuntos
Disfunção Cognitiva , Transtornos Relacionados ao Uso de Substâncias , Animais , Causalidade , Disfunção Cognitiva/epidemiologia , Humanos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
20.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782101

RESUMO

With the advent of tools for recording and manipulating activity with high spatiotemporal resolution in defined neural circuits in behaving animals, behavioral neuroscience is now tasked with establishing field-wide standards for implementing and interpreting these powerful approaches. Theoretical frameworks for what constitute proof of fundamental neurobiological principles is an ongoing and frequently debated topic. On the other hand, standardizing interpretation of individual experimental findings to avoid spurious conclusions in practice has received less attention. Even within subfields, similar assays are often used to support widely disparate conclusions which in part has contributed to a slew of studies claiming highly specified functions for cell types and circuits which are often in direct disagreement with one another. In this opinion piece, we discuss common pitfalls in design and interpretation of approaches for recording or manipulating neural activity in animal models of motivated behavior. We emphasize the importance of integrating findings across multiple behavioral assays concomitant with tempered inference regarding specialized neuronal functions as a standardized starting point for parsing circuit control of behavior. Our aim is to stimulate an open and accessible discourse in the literature to address issues of continuity across behavioral neurosciences.


Assuntos
Experimentação Animal , Neurociências , Animais , Comportamento Animal , Encéfalo , Modelos Animais , Sistema Nervoso , Neurônios , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...