Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Aquat Toxicol ; 264: 106734, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37913685

RESUMO

Mechanistic toxicology approaches represent a promising alternative to traditional live animal testing; however, the often-noted uncertainties concerning the linkages between effects observed at molecular and apical levels curtails the adoption of such approaches. The objective of this study was to apply a novel transcriptomics tool, EcoToxChips, to characterize the effects of complex mixtures of contaminants in fish and to compare molecular response patterns to higher-level biological responses including swimming behavior, deformities, and mortality. Fathead minnow (FHM) embryos were exposed for seven days to increasing concentrations of groundwater collected from moderate (MIAZ) and high (HIAZ) industrial activity zones of a legacy contaminated site. There was a concentration-dependent disruption of photo-dependent swimming responses associated with avoidance behavior patterns and spinal deformities (HIAZ and MIAZ), and an induction of pericardial edema and mortality (HIAZ-10%). Parallel EcoToxChip analyses showed a shift from a majority of upregulated genes at lower concentrations to a majority of downregulated genes at higher concentrations for both treatment conditions. Many of the significantly differentially regulated genes were involved in biological pathways including induction of oxidative stress, activating of several metabolic processes and growth, cell death, and inhibition of signal transduction signaling processes. Several contaminants present in the groundwater mixtures could have contributed to an exceedance of antioxidant system capacities that possibly led to the deformities, altered swimming behaviours, and mortality observed in FHMs. Therefore, molecular response patterns could be linked to apical outcomes observed in this study. Overall, the results observed in this study demonstrate that transcriptomics approaches such as the EcoToxChip system could be supportive of risk assessment of complex contaminated sites.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Larva , Poluentes Químicos da Água/toxicidade , Cyprinidae/metabolismo , Natação , Perfilação da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-37984821

RESUMO

Incorporating the ecosystem services (ES) approach into soil ecological risk assessment (ERA) has been advocated over the years, but implementing the approach in ERA faces some challenges. However, several researchers have made significant improvements to the soil ERA, such as applying the species sensitivity distribution (SSD) to discern chemical effects on the soil ecosystem. Despite the considerable contributions of SSD to ERA, SSD fails to relate chemical impact on individual species to ES and account for functional redundancy as well as soil ecosystem complexity. Here, we introduce the Eco-indicator Sensitivity Distribution (EcoSD). An EcoSD fits ecological functional groups and soil processes, termed "eco-indicators," instead of individual species responses to a statistical distribution. These eco-indicators are related directly to critical ecosystem functions that drive ES. We derived an EcoSD for cadmium as a model chemical and estimated a soil ecosystem protection value (EcoPVSoil ) based on the eco-indicator dataset for cadmium from the literature. The EcoSD identified nitrogen cycling as the critical process disrupted by cadmium. A key advantage of EcoSD is that it identifies key ecological and chemical indicators of an ES effect. In doing so, it links chemical monitoring results to sensitive ecological functions. The estimated EcoPVSoil for cadmium was slightly more protective of the soil ecosystem than most regional soil values derived from this study's dataset and soil guideline values from the literature. Thus, EcoSD has proven to be a practical and valuable ES concept with the potential to serve as an initial step of the tiered ERA approach. Integr Environ Assess Manag 2023;00:1-14. © 2023 SETAC.

3.
Environ Pollut ; 339: 122772, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37858700

RESUMO

Growth is an important toxicity end-point in ecotoxicology but is rarely used in soil ecotoxicological studies. Here, we assessed the growth change of Oppia nitens when exposed to reference and heavy metal toxicants. To assess mite growth, we developed an image analysis methodology to measure colour spectrum changes of the mite integument at the final developmental stage, as a proxy for growth change. We linked the values of red, green, blue, key-black, and light colour of mites to different growth stages. Based on this concept, we assessed the growth change of mites exposed to cadmium, copper, zinc, lead, boric acid, or phenanthrene at sublethal concentrations in LUFA 2.2 soil for 14 days. Sublethal effects were detected after 7 days of exposure. The growth of O. nitens was more sensitive than survival and reproduction when exposed to copper (EC50growth = 1360 mg/kg compared to EC50reproduction = 2896 mg/kg). Mite growth sensitivity was within the same order of magnitude to mite reproduction when exposed to zinc (EC50growth = 1785; EC50reproduction = 1562 mg/kg). At least 25% of sublethal effects of boric acid and phenanthrene were detected in the mites but growth was not impacted when O. nitens were exposed to lead. Consistent with previous studies, cadmium was the most toxic metal to O. nitens. The mite growth pattern was comparable to mite survival and reproduction from previous studies. Mite growth is a sensitive toxicity endpoint, ecologically relevant, fast, easy to detect, and can be assessed in a non-invasive fashion, thereby complimenting existing O. nitens testing protocols.


Assuntos
Ácaros , Fenantrenos , Poluentes do Solo , Animais , Cádmio/análise , Cobre/análise , Solo , Cor , Poluentes do Solo/análise , Zinco/análise , Reprodução , Compostos Orgânicos , Fenantrenos/toxicidade , Fenantrenos/análise
4.
Front Microbiol ; 14: 1097909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645222

RESUMO

Bacteria provide ecosystem services (e.g., biogeochemical cycling) that regulate climate, purify water, and produce food and other commodities, yet their distribution and likely responses to change or intervention are difficult to predict. Using bacterial 16S rRNA gene surveys of 1,381 soil samples from the Biomes of Australian Soil Environment (BASE) dataset, we were able to model relative abundances of soil bacterial taxonomic groups and describe bacterial niche space and optima. Hold out sample validated hypothetical causal networks (structural equation models; SEM) were able to predict the relative abundances of bacterial taxa from environmental data and elucidate soil bacterial niche space. By using explanatory SEM properties as indicators of microbial traits, we successfully predicted soil bacterial response, and in turn potential ecosystem service response, to near-term expected changes in the Australian climate. The methods developed enable prediction of continental-scale changes in bacterial relative abundances, and demonstrate their utility in predicting changes in bacterial function and thereby ecosystem services. These capabilities will be strengthened in the future with growing genome-level data.

5.
Sci Total Environ ; 857(Pt 2): 159553, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270374

RESUMO

Metal-impacted sites often need aggressive ecorestoration strategies to restore a functional plant-soil system. The use of biological soil crusts for soil stabilization, moisture retention and C and N input in disturbed and contaminated soils is becoming a more common ecorestoration practice. Biological soil crusts comprise cyanobacteria, fungi, lichens, and bryophytes (mostly moss). Moss-dominated BSCs provide significant N mineralization rate in most terrestrial ecosystems. Oribatid mites or moss mites dominate moss-dominated BSCs and provide essential ecosystem services such as decomposition and nutrient cycling. We hypothesized that moss-dominated BSCs would create a high-quality habitat niche for O. nitens to resist Cd-induced toxicity. Adult mites were exposed to Cd for 28 days in soil with or without BSCs that were aged for eight months. Cadmium toxicity to mites in soil without BSCs was 1.7 and 5.4times greater than in soil with BSCs, respectively for the mites reproduction and instantaneous population growth rate (PGRi). The moss-dominated BSC did not reduce Cd bioavailability in the mites but increased the mite's resilience to Cd toxicity, likely mediated by the trophic transfer of calcium from the BSC to the mites. Our work identifies a second mechanistic avenue by which BSCs are useful for ecorestoration, i.e., the improvement of soil invertebrate physiology to resist metal stress.


Assuntos
Briófitas , Ácaros , Poluentes do Solo , Animais , Solo/química , Ácaros/fisiologia , Cádmio/toxicidade , Ecossistema , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
6.
Glob Chang Biol ; 28(13): 4211-4224, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377512

RESUMO

Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH4 ) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatio-temporal convergence of ecological factors to occur. Spatial delineation of microbial activity with respect to these key microbial and biogeochemical factors at relevant scales is experimentally challenging in inherently complex and heterogeneous natural soil matrices. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation with C/N chemistry and metagenomic characteristics. This is achieved by using positron-emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils with and without diapirism. X-ray absorption spectroscopic speciation of active and inactive areas shows CH4 uptake spatially associates with greater proportions of inorganic N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated genes. This study highlights the critical relationship between CH4 and N cycles in Arctic soils, with potential implications for better understanding future climate. Furthermore, our experimental framework presents a novel, widely applicable strategy for unraveling ecological relationships underlying greenhouse gas dynamics under global change.


Assuntos
Furunculose , Gases de Efeito Estufa , Animais , Elétrons , Gases de Efeito Estufa/análise , Metano/análise , Solo/química
7.
Appl Environ Microbiol ; 88(10): e0027322, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35481756

RESUMO

Holobiont bacterial community assembly processes are an essential element to understanding the plant microbiome. To elucidate these processes, leaf, root, and rhizosphere samples were collected from eight lines of Brassica napus in Saskatchewan over the course of 10 weeks. We then used ecological null modeling to disentangle the community assembly processes over the growing season in each plant part. The root was primarily dominated by stochastic community assembly processes, which is inconsistent with previous studies that suggest of a highly selective root environment. Leaf assembly processes were primarily stochastic as well. In contrast, the rhizosphere was a highly selective environment. The dominant rhizosphere selection process leads to more similar communities. Assembly processes in all plant compartments were dependent on plant growth stage with little line effect on community assembly. The foundations of assembly in the leaf were due to the harsh environment, leading to dominance of stochastic effects, whereas the stochastic effects in the root interior likely arise due to competitive exclusion or priority effects. Engineering canola microbiomes should occur during periods of strong selection assuming strong selection could promote beneficial bacteria. For example, engineering the microbiome to resist pathogens, which are typically aerially born, should focus on the flowering period, whereas microbiomes to enhance yield should likely be engineered postflowering as the rhizosphere is undergoing strong selection. IMPORTANCE In order to harness the microbiome for more sustainable crop production, we must first have a better understanding of microbial community assembly processes that occurring during plant development. This study examines the bacterial community assembly processes of the leaf, root, and rhizosphere of eight different lines of Brassica napus over the growing season. The influence of growth stage and B. napus line were examined in conjunction with the assembly processes. Understanding what influences the assembly processes of crops might allow for more targeted breeding efforts by working with the plant to manipulate the microbiome when it is undergoing the strongest selection pressure.


Assuntos
Brassica napus , Brassica napus/microbiologia , Melhoramento Vegetal , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo
8.
J Environ Qual ; 50(6): 1440-1451, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34647326

RESUMO

Microbial degradation of subsurface organic contaminants is often hindered by the low availability of both contaminants and nutrients, especially phosphorus (P). The use of activated carbon and traditional P fertilizers to overcome these challenges has proved ineffective; therefore, we sought to find an innovative and effective solution. By heating bone meal-derived organic residues in water in a closed reactor, we synthesized nonporous colloids composed of aromatic and aliphatic structures linked to P groups. X-ray absorption near edge spectroscopy analysis revealed that the materials contain mostly bioavailable forms of P (i.e., adsorbed P and magnesium-bearing brushite). The capacity of the materials to adsorb organic contaminants was investigated using benzene and batch isotherm experiments. The adsorption isotherms were fitted to the linearized Freundlich model; isotherm capacity (logKF ) values for the materials ranged between 1.6 and 2.8 µg g-1 . These results indicate that the colloidal materials have a high affinity for organic contaminants. This, coupled with their possession of bioavailable P, should make them effective amendments for in situ groundwater bioremediation. Also, the materials' chemical properties suggest that they are not recalcitrant, implying that they will not become potential contaminants when released into the environment.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Nutrientes , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 55(14): 9864-9875, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34170682

RESUMO

Effective bioremediation of hydrocarbons requires innovative approaches to minimize phosphate precipitation in soils of different buffering capacities. Understanding the mechanisms underlying sustained stimulation of bacterial activity remains a key challenge for optimizing bioremediation-particularly in northern regions. Positron emission tomography (PET) can trace microbial activity within the naturally occurring soil structure of intact soils. Here, we use PET to test two hypotheses: (1) optimizing phosphate bioavailability in soil will outperform a generic biostimulatory solution in promoting hydrocarbon remediation and (2) oligotrophic biostimulation will be more effective than eutrophic approaches. In so doing, we highlight the key bacterial taxa that underlie aerobic and anaerobic hydrocarbon degradation in subarctic soils. In particular, we showed that (i) optimized phosphate bioavailability outperformed generic biostimulatory solutions in promoting hydrocarbon degradation, (ii) oligotrophic biostimulation is more effective than eutrophic approaches, and (iii) optimized biostimulatory solutions stimulated specific soil regions and bacterial consortia. The knowledge gleaned from this study will be crucial in developing field-scale biodegradation treatments for sustained stimulation of bacterial activity in northern regions.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
10.
Chemosphere ; 276: 130150, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33721632

RESUMO

Boron is an essential plant micronutrient responsible for several important functions. Boron availability in soils may be influenced by binding with soil organic matter (SOM), particularly with aromatic diol and polyphenol groups on SOM. The mechanism by which aromatic diols bind boron, however, remains unclear. The objective of this work is to further investigate interaction between boric acid and varying concentrations of an aromatic, polyphenolic SOM analogue (tannic acid at 5, 10 and 20 g L-1) from pH = 5-9. UV/Visible spectroscopy showed boric acid enhanced tannic acid deprotonation at pH = 7.0 and 9.0, resulting in singly deprotonated tannic acid subunits. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) showed boric acid/tannic acid binding for all concentrations at pH = 7 and 9, whereas binding at pH = 5.0 was observed only at 20 g L-1 tannic acid. Uncomplexed boron species were not evident at pH = 9.0, but were detectable at pH = 7.0 at lower tannic acid concentrations and prevalent at pH = 5.0, qualitatively indicating binding affinity increases from pH = 5.0 to 9.0. ATR-FTIR results indicated tetrahedral coordination of boron upon complexation to tannic acid with a monodentate mechanism. These results collectively highlight a transition of solution planar boric acid to a tetrahedral, monodentate coordination with a single phenol group in tannic acid polyphenols. This contrasts with previous spectroscopic studies, which indicated bidentate tetrahedral or monodentate trigonal planar orientations prevail at aromatic diol sites. This work presents a previously unobserved boric acid coordination mechanism to an SOM analogue and, therefore, may better inform prediction and modeling of boron behavior in soils.


Assuntos
Boratos , Solo , Ácidos Bóricos , Boro
11.
J Hazard Mater ; 409: 124969, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33418293

RESUMO

This study investigated the influence of habitat quality (HQ) on the reproduction and bioenergetics (energy reserve and metabolic enzyme activities) of the oribatid mite, Oppia nitens, in response to cadmium (Cd). In the baseline toxicity test, Cd elevated the carbohydrate reserve of adult mites at intermediate Cd concentrations (88 and 175 mg Cd kg-1) but without a change in lipid and protein reserve across 0-700 mg Cd kg-1. The activities of glucose metabolism enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and pyruvate kinase (PK) were inhibited in the mites at 700 mg Cd kg-1. Adult mites reared in high HQ soils had higher reproduction relative to mites from low HQ soils when exposed to Cd in OECD soil, but there was no difference in bioenergetics between mites from low and high HQ soils. Hence, HQ significantly (p = 0.024) influenced the reproduction of mites (i.e., juvenile production) irrespective of the Cd concentration in the OECD soil but did not significantly affect the bioenergetics of the mites. We suggest that habitat quality's effect could be more significant than metal concentration on the biological fitness (juvenile production) of O. nitens in metal-contaminated soils.


Assuntos
Poluentes do Solo , Solo , Animais , Cádmio/toxicidade , Ecossistema , Poluição Ambiental , Invertebrados , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Integr Environ Assess Manag ; 17(4): 753-766, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33210810

RESUMO

Multiple metal-impacted soils are often realistic scenarios for risk assessments, but tools to address these are currently lacking. The objective of this work was to evaluate whether assuming concentration addition (CA) of metal mixture effects was conservative for prospective risk assessment of soils that were elevated mainly in Ni and Cu and somewhat with Co, Pb, or As. Observed whole mixture toxicity for field soils with aged metal mixtures was compared to the expected whole mixture toxicity, assuming additivity of prospective single-metal thresholds ("toxic units") for the mixture components. Bioavailability-adjusted single-metal toxicity thresholds expected for those field soils were the median hazard concentration affecting 5% of species (HC5-50) from the predicted no-effect concentration (PNEC) calculator and calculated from the species-specific dose-response multiple linear relationships (MLRs), all from the European Union Registration, Evaluation, Authorisation and Restriction of Chemicals (EU REACH) dossiers for metals. Generic single-metal toxicity thresholds were based on Canadian Council of Ministers of the Environment soil quality guidelines (CCME SQGs) for agricultural soils. Observed toxicity thresholds were from the community-based risk assessments conducted for Port Colborne and Sudbury, Ontario, Canada. Mostly, prospective single-metal toxicity thresholds were protective relative to the observed toxicity, although that was species or ecological process dependent. The bioavailability-adjusted single-metal thresholds were less conservative than the CCME SQG method, even though the former is based on site-specific EC10 values, and the latter is based on generic EC25 values. When within-site variability in soil properties was used to calculate the 5th and 95th CI for the HC5 sum of toxic units (∑TUs), CA was conservative for far fewer endpoints. In addition, the prospective ∑TUs were more conservative predictions of the observed whole mixture toxicities for Port Colborne soils than for Sudbury soils. The most appropriate balance of accuracy and conservatism for identifying low-level risk of the whole mixtures in these soils appeared to be the bioavailability-adjusted HC5-50, which was applicable to many endpoints and 2 quite different exposure concentration ratios. Integr Environ Assess Manag 2021;17:753-766. © 2020 SETAC.


Assuntos
Poluentes do Solo , Solo , Cobalto , Cobre , Níquel , Ontário , Estudos Prospectivos , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
13.
Mol Imaging ; 19: 1536012120966405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119419

RESUMO

Positron-emitting nuclides have long been used as imaging agents in medical science to spatially trace processes non-invasively, allowing for real-time molecular imaging using low tracer concentrations. This ability to non-destructively visualize processes in real time also makes positron imaging uniquely suitable for probing various processes in plants and porous environmental media, such as soils and sediments. Here, we provide an overview of historical and current applications of positron imaging in environmental research. We highlight plant physiological research, where positron imaging has been used extensively to image dynamics of macronutrients, signalling molecules, trace elements, and contaminant metals under various conditions and perturbations. We describe how positron imaging is used in porous soils and sediments to visualize transport, flow, and microbial metabolic processes. We also address the interface between positron imaging and other imaging approaches, and present accompanying chemical analysis of labelled compounds for reviewed topics, highlighting the bridge between positron imaging and complementary techniques across scales. Finally, we discuss possible future applications of positron imaging and its potential as a nexus of interdisciplinary biogeochemical research.


Assuntos
Elétrons , Plantas , Traçadores Radioativos , Solo
14.
Data Brief ; 31: 106143, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32953951

RESUMO

The plant microbiome has been recently recognized as a plant phenotype to help in the food security of the future population. However, global plant microbiome datasets are insufficient to be used effectively for breeding this new generation of crop plants. We surveyed the diversity and temporal composition of bacterial and fungal communities in the root and rhizosphere of Brassica napus, the world's second largest oilseed crop, weekly in eight diverse lines at one site and every three weeks in sixteen lines, at three sites in 2016 and 2017 in the Canadian Prairies. We sequenced the bacterial 16S ribosomal RNA gene generating a total of 127.7 million reads and the fungal internal transcribed spacer (ITS) region generating 113.4 million reads. 14,944 unique fungal amplicon sequence variants (ASV) were detected, with an average of 43 ASVs per root and 105 ASVs per rhizosphere sample. We detected 10,882 unique bacterial ASVs with an average of 249 ASVs per sample. Temporal, site-to-site, and line-driven variability were key determinants of microbial community structure. This dataset is a valuable resource to systematically extract information on the belowground microbiome of diverse B. napus lines in different environments, at different times in the growing season, in order to adapt effective varieties for sustainable crop production systems.

15.
Data Brief ; 30: 105467, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32346558

RESUMO

The plant microbiome has been recently recognized as a plant phenotype to help in the food security of the future population. However, global plant microbiome datasets are insufficient to be used effectively for breeding this new generation of crop plants. We surveyed the diversity and temporal composition of fungal communities in the root and rhizosphere of Brassica napus, the world's second largest oilseed crop, weekly in eight diverse lines at one site and every three weeks in sixteen lines, at three sites in 2016 and 2017 in the Canadian Prairies. 14,944 unique amplicon sequence variants (ASV) were detected based on the internal transcribed spacer region, with an average of 43 ASVs per root and 105 ASVs per rhizosphere sample. Temporal, site-to-site, and line-driven variability were key determinants of fungal community structure. This dataset is a valuable resource to systematically extract information on the belowground microbiome of diverse B. napus lines in different environments, at different times in the growing season, in order to adapt effective varieties for sustainable crop production systems.

16.
Sci Data ; 7(1): 86, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152302

RESUMO

Invasive plants can cause changes in the structure and function of the ecosystem being invaded. Any changes in ecosystem diversity and community composition will likely alter ecosystem services provided by that ecosystem. However, how these ecosystem services may change is poorly understood. To elucidate how these ecosystem services will change with invasion, we sampled 561 plots undergoing invasion by smooth brome (Bromus inermis) and four other invasive species at a native Rough Fescue prairie located near Saskatoon, Saskatchewan, Canada. Soil and plant surveys were undertaken weekly for 26 weeks between May of 2014 and November of 2014, or the growing season. We measured a suite of ecosystem services, including greenhouse gasses, extracellular enzyme function, forage production, glyphosate degradation and decomposition. Furthermore, soil physical and chemical properties were measured, and soil bacterial and fungal communities were sequenced. This is a large and multifaceted dataset with complex temporal and spatial attributes which can be used to answer numerous questions regarding the functioning of prairie ecosystems and how invasive species will impact that functioning.


Assuntos
Bromus , Pradaria , Espécies Introduzidas , Microbiologia do Solo , Bactérias/classificação , Fungos/classificação , Microbiota , Saskatchewan , Estações do Ano
17.
PLoS One ; 15(2): e0229172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32092104

RESUMO

Phosphorus (P) fertilizers are crucial to achieve peak productivity in agricultural systems. However, the fate of P fertilizers via microorganism incorporation and the exchange processes between soil pools is not well understood. 18Oxygen-labelled phosphate (18O- Pi) can be tracked as it cycles through soil systems. Our study describes biological and geochemical P dynamics using a tandem mass spectrometry (MS/MS) method for the absolute quantification of 18O- Pi. Soil microcosms underwent three treatments: (i) 18O- Pi, (ii) unlabelled phosphate (16O- Pi) or (iii) Milli-Q control, dissolved in a bio-stimulatory solution. During a 6-week series the microcosms were sampled to measure P by Hedley sequential fractionation and DNA extraction samples digested to 3'-deoxynucleoside 5'-monophosphates (dNMP). A MS/MS attached to a HPLC analyzed each P-species through collision-induced dissociation. The resin-extractable and bicarbonate 18O- Pi and 16O- Pi fractions displayed similar precipitation and adsorption-desorption trends. Biotic activity measured in the NaOH and dNMP fractions rapidly delabelled 18O- Pi; however, the MS/MS measured some 18O that remained between the P backbone and deoxyribose sugars. After 6 weeks, the 18O- Pi had not reached the HCl soil pool, highlighting the long-term nature of P movement. Our methodology improves on previous isotopic tracking methods as endogenous P does not dilute the system, unlike 32P techniques, and measured total P is not a ratio, dissimilar from natural abundance techniques. Measuring 18O- Pi using MS/MS provides information to enhance land sustainability and stewardship practices regardless of soil type by understanding both the inorganic movement of P fertilizers and the dynamic P pool in microbial DNA.


Assuntos
Agricultura/métodos , Isótopos de Oxigênio/análise , Fosfatos/análise , Espectrometria de Massas em Tandem/métodos , Fracionamento Químico , DNA Bacteriano/análise , Fertilizantes/análise , Solo/química
18.
J Hazard Mater ; 392: 122341, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092659

RESUMO

Metal mixture toxicity across soil types is a daunting challenge to risk assessment. Here, we evaluated metal mixture toxicity in Oppia nitens, using ten fixed metal mixture ratios in five Canadian soils that closely matched some of the EU PNEC reference soils. Soils were dosed with five metals (Cu, Zn, Pb, Co, Ni) as single metals (ten concentrations) and as mixtures (eight concentrations). Synchronized adult mites were exposed to metals, with survival and reproduction assessed after 28 days. We found out that (i) the differences among soils in mite sensitivity and single metals were not consistent when mites were exposed to metal mixtures, (ii) assuming concentration addition, the mixture interaction factor (MIF) showed that single metal low effect levels excessively underestimated low level metal mixture effects (iii) Zn emerged as a protective metal in most mixtures, and (iv) Soil properties such as CEC, independent of effects on metal speciation, explained more of the variation than measured metals. This study suggests that metal risk assessment should be done on a case by case basis. Further work is needed to ensure that by protecting soil-dwelling organisms from single metals, the risk from metal mixtures is appropriately protected for.


Assuntos
Metais Pesados/toxicidade , Ácaros/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Canadá , Interações Medicamentosas , Metalurgia , Mineração
19.
Chemosphere ; 248: 126031, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32032877

RESUMO

The soil-air exchange of pesticides is one potential fate and exposure pathways, and this process is generally thought to be governed by soil properties and environmental conditions. The experimental determination of soil-air partitioning coefficient (Ksa) is laborious and costly and typically, Ksa's are predicted from a semiempirical or a simple linear regression approach with soil and environmental variables. Here we developed a model that combined linear regression of soil, environmental and molecular parameters with the quantitative structural-property relationship (QSPR) to predict Ksa for pesticides. The values of theoretical descriptors of pesticides were calculated and the best descriptors selected using the Boruta Algorithm. Seventy-six experimental logKsa values for 17 pesticides were used in model development. Multiple linear regression (MLR) with a soil (organic carbon fraction), physicochemical (octanol-air partitioning coefficient), environmental (temperature and humidity) and molecular descriptor (Gmin, a 2D E-state molecular parameter), called as MLR-QSPR combined model exhibited better predictability (adj. r2 = 0.95) of logKsa compared to MLR (adj. r2 = 0.87) or QSPR (adj. r2 = 0.82) itself. MLR-QSPR also showed the best performance in five-fold cross-validation (adj. r2 = 0.94) and test set verification (adj. r2 = 0.96). The developed model was validated and characterized by the applicability domain. Results showed that the proposed MLR-QSPR approach is highly predictive and statistically robust with >95% of predictions within ±0.5 log unit of the measured Ksa. Therefore, this approach can be used in estimating the soil-air partitioning of pesticides to better predict it's fate and transport in environments.


Assuntos
Poluentes Atmosféricos/química , Praguicidas/química , Relação Quantitativa Estrutura-Atividade , Poluentes do Solo/química , Solo/química , Algoritmos , Umidade , Modelos Lineares , Octanóis/química , Reprodutibilidade dos Testes , Temperatura
20.
Environ Pollut ; 259: 113912, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31931414

RESUMO

Cadmium (Cd) is a heavy metal of concern in contaminated sites because of its high toxicity to soil biota and humans. Typically, Cd exposure is thought to be dominated by dissolved Cd in soil pore water and, thus, dermal uptake. In this study, we investigated the uptake, toxicity, and maternal transfer of Cd in a standard soil invertebrate, the oribatid mite (Oppia nitens), which is common to boreal and temperate ecozones. We found total soil Cd predicted Cd uptake in adult and juvenile O. nitens with no significant uptake from pore water by juvenile mites. Cadmium significantly inhibited juvenile production and recruitment as well as reduced adult fecundity. Adult O. nitens maternally transferred 39-52% of their Cd body burden to juveniles (tritonymphs) while the maternally-acquired Cd accounted for 41% of the juvenile internal Cd load. Our results suggest that dermal adsorption of metal ions is not important for O. nitens and that maternal transfer of Cd in soil invertebrates has ecological and toxicological implications for populations of soil invertebrates. Maternal transfer should be incorporated as a criterion in setting environmental soil quality guidelines (SQGE) for cadmium and other non-essential heavy metals.


Assuntos
Cádmio/metabolismo , Ácaros/fisiologia , Poluentes do Solo/metabolismo , Animais , Cádmio/toxicidade , Invertebrados/fisiologia , Reprodução , Medição de Risco , Solo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...