Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 4, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588161

RESUMO

BACKGROUND: Crops are under constant pressure due to global warming, which unfolds at a much faster pace than their ability to adapt through evolution. Agronomic traits are linked to cytoplasmic-nuclear genome interactions. It thus becomes important to understand the influence exerted by the organelles on gene expression under heat stress conditions and profit from the available genetic diversity. Maize (Zea mays) cytolines allow us to investigate how the gene expression changes under heat stress conditions in three different cytoplasmic environments, but each having the same nucleus. Analyzing retrograde signaling in such an experimental set-up has never been done before. Here, we quantified the response of three cytolines to heat stress as differentially expressed genes (DEGs), and studied gene expression patterns in the context of existing polymorphism in their organellar genomes. RESULTS: Our study unveils a plethora of new genes and GO terms that are differentially expressed or enriched, respectively, in response to heat stress. We report 19,600 DEGs as responding to heat stress (out of 30,331 analyzed), which significantly enrich 164 GO biological processes, 30 GO molecular functions, and 83 GO cell components. Our approach allowed for the discovery of a significant number of DEGs and GO terms that are not common in the three cytolines and could therefore be linked to retrograde signaling. Filtering for DEGs with a fold regulation > 2 (absolute values) that are exclusive to just one of the cytolines, we find a total of 391 up- and down-DEGs. Similarly, there are 19 GO terms with a fold enrichment > 2 that are cytoline-specific. Using GBS data we report contrasting differences in the number of DEGs and GO terms in each cytoline, which correlate with the genetic distances between the mitochondrial genomes (but not chloroplast) and the original nuclei of the cytolines, respectively. CONCLUSIONS: The experimental design used here adds a new facet to the paradigm used to explain how gene expression changes in response to heat stress, capturing the influence exerted by different organelles upon one nucleus rather than investigating the response of several nuclei in their innate cytoplasmic environments.


Assuntos
Resposta ao Choque Térmico , Zea mays , Zea mays/metabolismo , Resposta ao Choque Térmico/genética , Citoplasma/genética , Fenótipo , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Photosynth Res ; 139(1-3): 461-473, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30357676

RESUMO

Cyanobacteria, as well as green algae and higher plants, have highly conserved photosynthetic machinery. Cyanothece sp. ATCC 51142 is a unicellular, aerobic, diazotrophic cyanobacterium that fixes N2 in the dark. In Cyanothece, the psbA gene family is composed of five members, encoding different isoforms of the D1 protein. A new D1 protein has been postulated in the literature, which blocks PSII during the night and allows the fixation of nitrogen. We present data showing changes in PSII function in cells grown in cycles alternating between 12 h of light and dark, respectively, at Cyanothece sp. ATCC 51142. Cyanothece sp. ATCC 51142 uses intrinsic mechanisms to protect its nitrogenase activity in a two-stage process. In Stage I, immediately after the onset of darkness, the cells lose photosynthetic activity in a reversible process, probably by dissociation of water oxidation complex from photosystem II via a mechanism that does not require de novo protein synthesis. In Stage II, a more severe disruption of photosystem II function occurs is in part protein synthesis dependent and it could be a functional signature of the presence of sentinel D1 in a limited number of reaction centers still active or not yet inactivated by the mechanism described in Stage I. This process of inhibition uses light as a triggering signal for both the inhibition of photosynthetic activity and recovery when light returns. The intrinsic mechanism of photosynthetic inactivation during darkness with the interplay of the two mechanisms requires further studies.


Assuntos
Cyanothece/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Cyanothece/efeitos da radiação , Fotoperíodo , Complexo de Proteína do Fotossistema II/efeitos da radiação
3.
J Cell Sci ; 124(Pt 2): 216-27, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21172807

RESUMO

The p38 mitogen-activated protein kinase (p38 MAPK) family, which is comprised of four protein isoforms, p38α, p38ß, p38γ and p38δ, forms one of the key MAPK pathways. The p38 MAPKs are implicated in many cellular processes including inflammation, differentiation, cell growth, cell cycle and cell death. The function of p38 MAPKs in mitotic entry has been well established, but their role in mitotic progression has remained controversial. We identify p38γ MAPK as a modulator of mitotic progression and mitotic cell death. In HeLa cells, loss of p38γ results in multipolar spindle formation and chromosome misalignment, which induce a transient M phase arrest. The majority of p38γ-depleted cells die at mitotic arrest or soon after abnormal exit from M-phase. We show that p38 MAPKs are activated at the kinetochores and spindle poles throughout mitosis by kinase(s) that are stably bound to these structures. Finally, p38γ is required for the normal kinetochore localization of polo-like kinase 1 (Plk1), and this contributes to the activity of the p38 MAPK pathway. Our data suggest a link between mitotic regulation and the p38 MAPK pathway, in which p38γ prevents chromosomal instability and supports mitotic cell viability.


Assuntos
Células/citologia , Células/enzimologia , Proteína Quinase 12 Ativada por Mitógeno/deficiência , Mitose , Morte Celular , Linhagem Celular , Sobrevivência Celular , Células HeLa , Humanos , Proteína Quinase 12 Ativada por Mitógeno/genética , Fuso Acromático/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...