Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(1): 141-152.e5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38091996

RESUMO

Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor-positive (LepR+) sympathetic perineurial barrier cells (SPCs) present in mice and humans, which uniquely co-express Lepr and interleukin-33 (Il33) and ensheath AT sympathetic axon bundles. Brown ATs (BATs) of mice lacking IL-33 in SPCs (SPCΔIl33) had fewer regulatory T (Treg) cells and eosinophils, resulting in increased BAT inflammation. SPCΔIl33 mice were more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCΔIl33 mice had impaired adaptive thermogenesis and were unresponsive to leptin-induced rescue of metabolic adaptation. We therefore identify LepR+ SPCs as a source of IL-33, which orchestrate an anti-inflammatory BAT environment, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+IL-33+ SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.


Assuntos
Tecido Adiposo Marrom , Leptina , Animais , Humanos , Camundongos , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Peso Corporal , Metabolismo Energético/fisiologia , Interleucina-33/genética , Interleucina-33/metabolismo , Obesidade/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Termogênese/fisiologia
2.
Am J Physiol Endocrinol Metab ; 324(3): E226-E240, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724126

RESUMO

Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is currently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical pharmacological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduction, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succinate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction.NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting particularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 receptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.


Assuntos
Tecido Adiposo Marrom , Liraglutida , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Obesidade/metabolismo , Proteoma/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/metabolismo , Ácido Succínico/uso terapêutico , Termogênese , Proteína Desacopladora 1/metabolismo
3.
Biol Res Nurs ; 25(3): 353-366, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444640

RESUMO

BACKGROUND: Impaired wound healing is a health problem around the world, and the search for a novel product to repair wounded skin is a major topic in the field. GW9508 is a synthetic molecule described as a selective agonist of free fatty acid receptors (FFARs) 1 and 4, and there is evidence of its anti-inflammatory effects on several organs of the body. PURPOSE: Here, we aimed to evaluate the effects of topical GW9508 on wound healing in mice. RESEARCH DESIGN: First, we used bioinformatic methods to determine the expression of FFAR1 and FFAR4 mRNA in the skin from a human cell atlas assembled with single-cell transcriptomes. Next, we employed 6-week-old C57BL6J mice with 2 wounds inflicted in the back. The mice were randomly divided into 2 groups, a control group, which received topical vehicle, and a treatment group, which received GW9508, for 12 days. The wound was monitored by photographic documentation every 2 days, and samples were collected at day 6 and 12 post injury for RT-PCR, western blot and histology analyses. RESULTS: FFAR1 and FFAR4 mRNA are expressed in skin cells in similar amounts to those in other tissues. Topical GW9508 accelerated wound healing and decreased gene expression of IL-10 and metalloproteinase 9 on days 6 and 12 post injury. It increased the quantity of Collagen I and improved the organization of collagen fibres. Conclusions: Our results show that GW9508 could be an attractive drug treatment for wounded skin. Future studies need to be performed to assess the impact of GW9508 in chronic wound models.


Assuntos
Cicatriz , Metilaminas , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Metilaminas/farmacologia , Propionatos , Receptores Acoplados a Proteínas G , Pele , Colágeno , Anti-Inflamatórios/farmacologia , Administração Tópica
4.
Viruses ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560757

RESUMO

Because of the interface between coagulation and the immune response, it is expected that COVID-19-associated coagulopathy occurs via activated protein C signaling. The objective was to explore putative changes in the expression of the protein C signaling network in the liver, peripheral blood mononuclear cells, and nasal epithelium of patients with COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the COVID-19 Cell Atlas database. A functional protein-protein interaction network was constructed for the protein C gene. Patients with COVID-19 showed downregulation of protein C and components of the downstream protein C signaling cascade. The percentage of hepatocytes expressing protein C was lower. Part of the liver cell clusters expressing protein C presented increased expression of ACE2. In PBMC, there was increased ACE2, inflammatory, and pro-coagulation transcripts. In the nasal epithelium, PROC, ACE2, and PROS1 were expressed by the ciliated cell cluster, revealing co-expression of ACE-2 with transcripts encoding proteins belonging to the coagulation and immune system interface. Finally, there was upregulation of coagulation factor 3 transcript in the liver and PBMC. Protein C could play a mechanistic role in the hypercoagulability syndrome affecting patients with severe COVID-19.


Assuntos
COVID-19 , Trombofilia , Humanos , COVID-19/genética , Leucócitos Mononucleares/metabolismo , SARS-CoV-2/genética , Proteína C/genética , Proteína C/metabolismo , Regulação para Baixo , Transcriptoma , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/metabolismo , Trombofilia/genética
5.
Neuron ; 110(21): 3597-3626, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36327900

RESUMO

The sympathetic nervous system maintains metabolic homeostasis by orchestrating the activity of organs such as the pancreas, liver, and white and brown adipose tissues. From the first renderings by Thomas Willis to contemporary techniques for visualization, tracing, and functional probing of axonal arborizations within organs, our understanding of the sympathetic nervous system has started to grow beyond classical models. In the present review, we outline the evolution of these findings and provide updated neuroanatomical maps of sympathetic innervation. We offer an autonomic framework for the neuroendocrine loop of leptin action, and we discuss the role of immune cells in regulating sympathetic terminals and metabolism. We highlight potential anti-obesity therapeutic approaches that emerge from the modern appreciation of SNS as a neural network vis a vis the historical fear of sympathomimetic pharmacology, while shifting focus from post- to pre-synaptic targeting. Finally, we critically appraise the field and where it needs to go.


Assuntos
Neuroimunomodulação , Sistema Nervoso Simpático , Humanos , Sistema Nervoso Simpático/metabolismo , Obesidade , Tecido Adiposo Marrom/metabolismo , Homeostase
6.
Cells ; 11(13)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805082

RESUMO

BACKGROUND: The hypothalamic proopiomelanocortin (Pomc) neurons act as first-order sensors of systemic energy stores, providing signals that regulate caloric intake and energy expenditure. In experimental obesity, dietary saturated fatty acids affect Pomc endopeptidases (PCs), resulting in the abnormal production of the neurotransmitters α-melanocyte-stimulating hormone (α-MSH) and ß-endorphin, thus impacting energy balance. The cAMP response element-binding protein (CREB) is one of the transcription factors that control the expression of Pomc endopeptidases; however, it was previously unknown if dietary fats could affect CREB and consequently the expression of Pomc endopeptidases. METHODS: Here, we used single-cell RNA sequencing analysis, PCR, immunoblot, ELISA and immunofluorescence histological assays to determine the impact of a high-fat diet (HFD) on the expression and function of hypothalamic CREB and its impact on the melanocortinergic system. RESULTS: The results indicate that CREB is expressed in arcuate nucleus Pomc neurons and is activated as early as nine hours after the introduction of a high-fat diet. The inhibition of hypothalamic CREB using a short-hairpin RNA lentiviral vector resulted in increased diet-induced body-mass gain and reduced energy expenditure. This was accompanied by reduced expression of the Pomc endopeptidases, protein convertase 2, which are encoded by Pcsk2, and by the loss of the high-fat-diet-induced effect to inhibit the production of α-MSH. CONCLUSIONS: This study provides the first evidence for the involvement of CREB in the abnormal regulation of the hypothalamic Pomc endopeptidase system in experimental obesity.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Pró-Opiomelanocortina , Dieta Hiperlipídica , Endopeptidases , Humanos , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 2 , alfa-MSH/farmacologia
7.
J Neurosci ; 41(48): 10004-10022, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34675088

RESUMO

Nescient helix-loop-helix 2 (NHLH2) is a hypothalamic transcription factor that controls the expression of prohormone convertase 1/3, therefore having an impact on the processing of proopiomelanocortin and thus on energy homeostasis. Studies have shown that KO of Nhlh2 results in increased body mass, reduced physical activity, and hypogonadism. In humans, a polymorphism of the NHLH2 gene is associated with obesity; and in Prader-Willi syndrome, a condition characterized by obesity, hypogonadism and behavioral abnormalities, the expression of NHLH2 is reduced. Despite clinical and experimental evidence suggesting that NHLH2 could be a good target for the treatment of obesity, no previous study has evaluated the impact of NHLH2 overexpression in obesity. Here, in mice fed a high-fat diet introduced right after the arcuate nucleus intracerebroventricular injection of a lentivirus that promoted 40% increase in NHLH2, there was prevention of the development of obesity by a mechanism dependent on the reduction of caloric intake. When hypothalamic overexpression of NHLH2 was induced in previously obese mice, the beneficial impact on obesity-associated phenotype was even greater; thus, there was an 80% attenuation in body mass gain, reduced whole-body adiposity, increased brown adipose tissue temperature, reduced hypothalamic inflammation, and reduced liver steatosis. In this setting, the beneficial impact of hypothalamic overexpression of NHLH2 was a result of combined effects on caloric intake, energy expenditure, and physical activity. Moreover, the hypothalamic overexpression of NHLH2 reduced obesity-associated anxiety/depression behavior. Thus, we provide an experimental proof of concept supporting that hypothalamic NHLH2 is a good target for the treatment of obesity.SIGNIFICANCE STATEMENT Obesity is a highly prevalent medical condition that lacks an effective treatment. The main advance provided by this study is the demonstration of the beneficial metabolic and behavioral outcomes resulting from the overexpression of NHLH2 in the hypothalamus. When NHLH2 was overexpressed simultaneously with the introduction of a high-fat diet, there was prevention of obesity by a mechanism dependent on reduced caloric intake. Conversely, when NHLH2 was overexpressed in previously obese mice, there was reduction of the obese phenotype because of a combination of reduced caloric intake, increased physical activity, and increased thermogenesis. In addition, the overexpression of NHLH2 reduced anxiety/depression-like behavior. Thus, NHLH2 emerges as a potential target for the combined treatment of obesity and its associated anxiety/depression-like behavior.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Obesidade/metabolismo , Animais , Ansiedade/metabolismo , Índice de Massa Corporal , Depressão/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Masculino , Camundongos , Obesidade/psicologia
8.
J Neuroinflammation ; 18(1): 192, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465367

RESUMO

BACKGROUND: Interleukin-6 (IL6) produced in the context of exercise acts in the hypothalamus reducing obesity-associated inflammation and restoring the control of food intake and energy expenditure. In the hippocampus, some of the beneficial actions of IL6 are attributed to its neurogenesis-inducing properties. However, in the hypothalamus, the putative neurogenic actions of IL6 have never been explored, and its potential to balance energy intake can be an approach to prevent or attenuate obesity. METHODS: Wild-type (WT) and IL6 knockout (KO) mice were employed to study the capacity of IL6 to induce neurogenesis. We used cell labeling with Bromodeoxyuridine (BrdU), immunofluorescence, and real-time PCR to determine the expression of markers of neurogenesis and neurotransmitters. We prepared hypothalamic neuroprogenitor cells from KO that were treated with IL6 in order to provide an ex vivo model to further characterizing the neurogenic actions of IL6 through differentiation assays. In addition, we analyzed single-cell RNA sequencing data and determined the expression of IL6 and IL6 receptor in specific cell types of the murine hypothalamus. RESULTS: IL6 expression in the hypothalamus is low and restricted to microglia and tanycytes, whereas IL6 receptor is expressed in microglia, ependymocytes, endothelial cells, and astrocytes. Exogenous IL6 reduces diet-induced obesity. In outbred mice, obesity-resistance is accompanied by increased expression of IL6 in the hypothalamus. IL6 induces neurogenesis-related gene expression in the hypothalamus and in neuroprogenitor cells, both from WT as well as from KO mice. CONCLUSION: IL6 induces neurogenesis-related gene expression in the hypothalamus of WT mice. In KO mice, the neurogenic actions of IL6 are preserved; however, the appearance of new fully differentiated proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons is either delayed or disturbed.


Assuntos
Hipotálamo/metabolismo , Interleucina-6/genética , Neurogênese/genética , Neurônios/metabolismo , Obesidade/genética , Animais , Metabolismo Energético/fisiologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Hipotálamo/efeitos dos fármacos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Obesidade/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo
9.
J Clin Endocrinol Metab ; 106(2): 472-484, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33180910

RESUMO

BACKGROUND: The brown adipose tissue (BAT) is a potential target for the treatment of obesity and metabolic disorders. Its activation by cold exposure or adrenergic drugs can increase systemic insulin sensitivity and improve lipid metabolism; however, little is known about the effects of specific dietary components on BAT activity. OBJECTIVES: We asked if a short-term (4 weeks) dietary intervention with olive oil could modify BAT activity in lean and overweight/obese volunteers. DESIGN: This was a 4-week open clinical trial in which all participants underwent a dietary intervention with extra-virgin olive oil supplementation. As the initial intake of olive oil was controlled all the participants were controls of themselves. RESULTS: The intervention resulted in significant increase in blood monounsaturated fatty acid levels, which was accompanied by increased BAT activity in lean but not in overweight/obese volunteers. In the lean group, an increase in leptin was detected after the intervention, and low leptin values at the beginning of the study were predictive of greater BAT activity after intervention. In addition, increase in leptin concentration was associated with increased BAT activity. Three known endogenous mediators of BAT activity, secretin, fibroblast growth factor 21 (FGF21), and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) were increased by intervention in lean, whereas only secretin and FGF21 were increased in subjects with excessive weight. CONCLUSION: This study provides clinical evidence for the impact of monounsaturated fatty acids on BAT activity and an advance in the understanding of the beneficial health effects of olive oil.


Assuntos
Tecido Adiposo Marrom/fisiologia , Obesidade/dietoterapia , Azeite de Oliva/administração & dosagem , Sobrepeso/dietoterapia , Magreza/dietoterapia , Tecido Adiposo Marrom/efeitos dos fármacos , Adulto , Feminino , Seguimentos , Humanos , Masculino , Obesidade/metabolismo , Sobrepeso/metabolismo , Prognóstico , Magreza/metabolismo
10.
Sci Rep ; 10(1): 19522, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177594

RESUMO

SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID-19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory insufficiency, acute cardiovascular failure, and coagulopathy. Physiologically, ACE2 plays a role in the regulation of three systems that could potentially be involved in the pathogenesis of severe COVID-19: the kinin-kallikrein system, resulting in acute lung inflammatory edema; the renin-angiotensin system, promoting cardiovascular instability; and the coagulation system, leading to thromboembolism. Here we assembled a healthy human lung cell atlas meta-analysis with ~ 130,000 public single-cell transcriptomes and show that key elements of the bradykinin, angiotensin and coagulation systems are co-expressed with ACE2 in alveolar cells and associated with their differentiation dynamics, which could explain how changes in ACE2 promoted by SARS-CoV-2 cell entry result in the development of the three most severe clinical components of COVID-19.


Assuntos
Betacoronavirus/genética , Coagulação Sanguínea , Perfilação da Expressão Gênica , Sistema Calicreína-Cinina/genética , Peptidil Dipeptidase A/genética , Alvéolos Pulmonares/citologia , Sistema Renina-Angiotensina/genética , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/enzimologia , Betacoronavirus/fisiologia , Humanos , Alvéolos Pulmonares/metabolismo , SARS-CoV-2 , Serina Endopeptidases/genética
11.
Brain Behav Immun ; 87: 272-285, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31863824

RESUMO

Interleukin-17 (IL-17) is expressed in the intestine in response to changes in the gut microbiome landscape and plays an important role in intestinal and systemic inflammatory diseases. There is evidence that dietary factors can also modify the expression of intestinal IL-17. Here, we hypothesized that, similar to several other gut-produced factors, IL-17 may act in the hypothalamus to modulate food intake. We confirm that food intake increases IL-17 expression in the mouse ileum and human blood. There is no expression of IL-17 in the hypothalamus; however, IL-17 receptor A is expressed in both pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons. Upon systemic injection, IL-17 promoted a rapid increase in hypothalamic POMC expression, which was followed by a late increase in the expression of AgRP. Both systemic and intracerebroventricular injections of IL-17 reduced calorie intake without affecting whole-body energy expenditure. Systemic but not intracerebroventricular injection of IL-17 increase brown adipose tissue temperature. Thus, IL-17 is a gut-produced factor that is controlled by diet and modulates food intake by acting in the hypothalamus. Our findings provide the first evidence of a cytokine that is acutely regulated by food intake and plays a role in the regulation of eating.


Assuntos
Hipotálamo , Interleucina-17 , Proteína Relacionada com Agouti/metabolismo , Animais , Ingestão de Alimentos , Humanos , Hipotálamo/metabolismo , Camundongos , Pró-Opiomelanocortina/metabolismo
12.
EBioMedicine ; 39: 448-460, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30522931

RESUMO

BACKGROUND: The Iroquois homeobox 3 (Irx3) gene has been identified as a functional long-range target of obesity-associated variants within the fat mass and obesity-associated protein (FTO) gene. It is highly expressed in the hypothalamus, and both whole-body knockout and hypothalamic restricted abrogation of its expression results in a lean phenotype, which is mostly explained by the resulting increased energy expenditure in the brown adipose tissue. Because of its potential implication in the pathogenesis of obesity, we evaluated the hypothalamic cell distribution of Irx3 and the outcomes of inhibiting its expression in a rodent model of diet-induced obesity. METHODS: Bioinformatics tools were used to evaluate the correlations between hypothalamic Irx3 and neurotransmitters, markers of thermogenesis and obesity related phenotypes. Droplet-sequencing analysis in >20,000 hypothalamic cells was used to explore the types of hypothalamic cells expressing Irx3. Lentivirus was used to inhibit hypothalamic Irx3 and the resulting phenotype was studied. FINDINGS: IRX3 is expressed predominantly in POMC neurons. Its expression is inhibited during prolonged fasting, as well as when mice are fed a high-fat diet. The partial inhibition of hypothalamic Irx3 using a lentivirus resulted in increased diet-induced body mass gain and adiposity due to increased caloric intake and reduced energy expenditure. INTERPRETATION: Contrary to the results obtained when lean mice are submitted to complete inhibition of Irx3, partial inhibition of hypothalamic Irx3 in obese mice causes an exacerbation of the obese phenotype. These data suggest that at least some of the Irx3 functions in the hypothalamus are regulated according to a hormetic pattern, and modulation of its expression can be a novel approach to modifying the body's energy-handling regulation. FUND: Sao Paulo Research Foundation grants 2013/07607-8 (LAV) and 2017/02983-2 (JDJ); NIH grants R01DK083567 (YBK).


Assuntos
Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Obesidade/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Peso Corporal , Linhagem Celular , Biologia Computacional/métodos , Modelos Animais de Doenças , Ingestão de Energia , Metabolismo Energético , Jejum/metabolismo , Humanos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Fenótipo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...