Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406328

RESUMO

Traditionally, the drilling waste generated in oil and gas exploration operations, including spent drilling fluid, is disposed of or treated by several methods, including burial pits, landfill sites and various thermal treatments. This study investigates drilling waste valorisation and its use as filler in polymer composites. The effect of the poor particle/polymer interfacial adhesion bonding of the suspended clay in oil-based mud (OBM) slurry and the LDPE matrix is believed to be the main reason behind the poor thermo-mechanical and mechanical properties of low-density polyethylene (LDPE)/OBM slurry nanocomposites. The thermo-mechanical and mechanical performances of LDPE)/OBM slurry nanocomposites without the clay surface treatment and without using compatibilizer are evaluated and discussed. In our previous studies, it has been observed that adding thermally treated reclaimed clay from OBM waste in powder form improves both the thermal and mechanical properties of LDPE nanocomposites. However, incorporating OBM clay in slurry form in the LDPE matrix can decrease the thermal stability remarkably, which was reported recently, and thereby has increased the interest to identify the mechanical response of the composite material after adding this filler. The results show the severe deterioration of the tensile and flexural properties of the LDPE/OBM slurry composites compared to those properties of the LDPE/MMT nanocomposites in this study. It is hypothesised, based on the observation of the different test results in this study, that this deterioration in the mechanical properties of the materials was associated with the poor Van der Waals force between the polymer molecules/clay platelets and the applied force. The decohesion between the matrix and OBM slurry nanoparticles under stress conditions generated stress concentration through the void area between the matrix and nanoparticles, resulting in sample failure. Interfacial adhesion bonding appears to be a key factor influencing the mechanical properties of the manufactured nanocomposite materials.

2.
Waste Manag ; 139: 362-380, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026697

RESUMO

Operational discharges from oil and gas exploration industry, accidental spillage, or improperly disposed drilling wastes has serious detrimental effects on human and the environment. The water- and oil-based fluids wastes are generated every year all over the world and remain a serious challenge in compliance with the requirements of zero discharge for the oil and gas industry. To meet environmental regulations, sustainable and effective waste management is critical yet mostly missing in the oil and gas industry. This work aims to provide the current state of art in drilling waste (drill cuttings and drilling fluids). An overview of the drilling fluid waste is first provided followed by its characteristics, environmental concerned constituents in this waste stream are then explored while considering the current waste management efforts. Environmental and regulatory issues regarding drilling waste and the shortcomings of regulations are also discussed. The work sums up with a perspective future trends on drilling waste management, opportunities and challenges ahead including the potential for recycling and re-use of waste drilling fluids and cuttings for commercial products development. There are opportunities for waste valorisation especially in raw materials recovery for valuable products utilisation rather than incurring burden to the environment.


Assuntos
Indústria de Petróleo e Gás , Gerenciamento de Resíduos , Reciclagem
3.
Waste Manag Res ; 38(12): 1331-1344, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32720590

RESUMO

Oil-based mud (OBM) waste from the oil and gas exploration industry can be valorised to tailor-made reclaimed clay-reinforced low-density polyethylene (LDPE) nanocomposites. This study aims to fill the information gap in the literature and to provide opportunities to explore the effective recovery and recycling techniques of the resources present in the OBM waste stream. Elemental analysis using inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray fluorescence analysis, chemical structural analysis by Fourier transform infrared (FTIR) spectroscopy, and morphological analysis of LDPE/organo-modified montmorillonite (LDPE/MMT) and LDPE/OBM slurry nanocomposites by scanning electron microscopy (SEM) have been conducted. Further analysis including calorimetry, thermogravimetry, spectroscopy, microscopy, energy dispersive X-ray analysis and X-ray diffraction (XRD) was carried out to evaluate the thermo-chemical characteristics of OBM waste and OBM clay-reinforced LDPE nanocomposites, confirming the presence of different clay minerals including inorganic salts in OBM slurry powder. The microscopic analysis revealed that the distance between polymer matrix and OBM slurry filler is less than that of MMT, which suggests better interfacial adhesion of OBM slurry compared with the adhesion between MMT and LDPE matrix. This was also confirmed by XRD analysis, which showed the superior delamination structure OBM slurry compared with the structure of MMT. There is a trend noticeable for both of these fillers that the nanocomposites with higher percentage filler contents (7.5 and 10.0 wt% in this case) were indicated to act as a thermal conductive material. The heat capacity values of nanocomposites decreased about 33% in LDPE with 7.5 wt% MMT and about 17% in LDPE with 10.0 wt% OBM slurry. It was also noted, for both nanocomposites, that the residue remaining after 1000°C increases with the incremental wt% of fillers in the nanocomposites. There is a big difference in residue amount (in %) left after thermogravimetric analysis in the two nanocomposites, indicating that OBM slurry may have significant influence in decomposing LDPE matrix; this might be an interesting area to explore in the future. The results provide insight and opportunity to manufacture waste-derived renewable nanocomposites with enhanced structural and thermal properties.


Assuntos
Nanocompostos , Polietileno , Bentonita , Cromatografia Gasosa-Espectrometria de Massas , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA