Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38668171

RESUMO

Non-toxic carbon-based hybrid nanomaterials based on carbon nanodisks were synthesized and assessed as novel antibacterial agents. Specifically, acid-treated carbon nanodisks (oxCNDs), as a safe alternative material to graphene oxide, interacted through covalent and non-covalent bonding with guanidinylated hyperbranched polyethyleneimine derivatives (GPEI5K and GPEI25K), affording the oxCNDs@GPEI5K and oxCNDs@GPEI25K hybrids. Their physico-chemical characterization confirmed the successful and homogenous attachment of GPEIs on the surface of oxCNDs, which, due to the presence of guanidinium groups, offered them improved aqueous stability. Moreover, the antibacterial activity of oxCNDs@GPEIs was evaluated against Gram-negative E. coli and Gram-positive S. aureus bacteria. It was found that both hybrids exhibited enhanced antibacterial activity, with oxCNDs@GPEI5K being more active than oxCNDs@GPEI25K. Their MIC and MBC values were found to be much lower than those of oxCNDs, revealing that the GPEI attachment endowed the hybrids with enhanced antibacterial properties. These improved properties were attributed to the polycationic character of the oxCNDs@GPEIs, which enables effective interaction with the bacterial cytoplasmic membrane and cell walls, leading to cell envelope damage, and eventually cell lysis. Finally, oxCNDs@GPEIs showed minimal cytotoxicity on mammalian cells, indicating that these hybrid nanomaterials have great potential to be used as safe and efficient antibacterial agents.

2.
ACS Omega ; 8(37): 33639-33650, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744818

RESUMO

Heterostructured photocatalytic materials in the form of photonic crystals have been attracting attention for their unique light harvesting ability that can be ideally combined with judicious compositional modifications toward the development of visible light-activated (VLA) photonic catalysts, though practical environmental applications, such as the degradation of pharmaceutical emerging contaminants, have been rarely reported. Herein, heterostructured MoS2-TiO2 inverse opal films are introduced as highly active immobilized photocatalysts for the VLA degradation of tetracycline and ciprofloxacin broad-spectrum antibiotics as well as salicylic acid. A single-step co-assembly method was implemented for the challenging incorporation of MoS2 nanosheets into the nanocrystalline inverse opal walls. Compositional tuning and photonic band gap engineering of the MoS2-TiO2 photonic films showed that integration of low amounts of MoS2 nanosheets in the inverse opal framework maintains intact the periodic macropore structure and enhances the available surface area, resulting in efficient VLA antibiotic degradation far beyond the performance of benchmark TiO2 films. The combination of broadband MoS2 visible light absorption and photonic-assisted light trapping together with the enhanced charge separation that enables the generation of reactive oxygen species via firm interfacial coupling between MoS2 nanosheets and TiO2 nanoparticles is concluded as a competent approach for pharmaceutical abatement in water bodies.

3.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37375780

RESUMO

The effect of carbon dots (CDs) on a model blayer membrane was studied as a means of comprehending their ability to affect cell membranes. Initially, the interaction of N-doped carbon dots with a biophysical liposomal cell membrane model was investigated by dynamic light scattering, z-potential, temperature-modulated differential scanning calorimetry, and membrane permeability. CDs with a slightly positive charge interacted with the surface of the negative-charged liposomes and evidence indicated that the association of CDs with the membrane affects the structural and thermodynamic properties of the bilayer; most importantly, it enhances the bilayer's permeability against doxorubicin, a well-known anticancer drug. The results, like those of similar studies that surveyed the interaction of proteins with lipid membranes, suggest that carbon dots are partially embedded in the bilayer. In vitro experiments employing breast cancer cell lines and human healthy dermal cells corroborated the findings, as it was shown that the presence of CDs in the culture medium selectively enhanced cell internalization of doxorubicin and, subsequently, increased its cytotoxicity, acting as a drug sensitizer.

4.
Cancers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900267

RESUMO

The enzyme ataxia-telangiectasia mutated (ATM) kinase is a pluripotent signaling mediator which activates cellular responses to genotoxic and metabolic stress. It has been shown that ATM enables the growth of mammalian adenocarcinoma stem cells, and therefore the potential benefits in cancer chemotherapy of a number of ATM inhibitors, such as KU-55933 (KU), are currently being investigated. We assayed the effects of utilizing a triphenylphosphonium-functionalized nanocarrier delivery system for KU on breast cancer cells grown either as a monolayer or in three-dimensional mammospheres. We observed that the encapsulated KU was effective against chemotherapy-resistant mammospheres of breast cancer cells, while having comparably lower cytotoxicity against adherent cells grown as monolayers. We also noted that the encapsulated KU sensitized the mammospheres to the anthracycline drug doxorubicin significantly, while having only a weak effect on adherent breast cancer cells. Our results suggest that triphenylphosphonium-functionalized drug delivery systems that contain encapsulated KU, or compounds with a similar impact, are a useful addition to chemotherapeutic treatment schemes that target proliferating cancers.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144970

RESUMO

The development of innovative osteoconductive matrices, which are enriched with antibiotic delivery nanosystems, has the invaluable potential to achieve both local contaminant eradication and the osseointegration of implanted devices. With the aim of producing safe, bioactive materials that have osteoconductive and antibacterial properties, novel, antibiotic-loaded, functionalized nanoparticles (AFN)-based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that can be integrated into peptide-enriched silk fibroin (PSF) matrices with osteoconductive properties-were successfully synthesized. The obtained AFNPSF sponges were first physico-chemically characterized and then tested in vitro against eukaryotic cells and bacteria involved in orthopedic or oral infections. The biocompatibility and microbiological tests confirmed the promising characteristics of the AFN-PSF products for both orthopedic and dental applications. These preliminary results encourage the establishment of AFN-PSF-based preventative strategies in the fight against implant-related infections.

6.
Front Cell Infect Microbiol ; 12: 1056912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683682

RESUMO

Introduction: Implant-related infections and infected fractures are significant burdens in orthopedics. Staphylococcus epidermidis is one of the main causes of bone infections related to biofilm formation upon implants. Current antibiotic prophylaxis/therapy is often inadequate to prevent biofilm formation and results in antibiotic resistance. The development of bioactive materials combining antimicrobial and osteoconductive properties offers great potential for the eradication of microorganisms and for the enhancement of bone deposition in the presence of infections. The purpose of this study is to prevent the development of methicillin-resistant S. epidermidis (MRSE)-infected nonunion in a rat model. Methods: To this end, a recently developed in our laboratories bioactive material consisting of antibiotic-loaded nanoparticles based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that are integrated into peptide-enriched silk fibroin sponges with osteoconductive properties (AFN-PSF) was employed, whose biocompatibility and microbiological tests provided proof of its potential for the treatment of both orthopedic and dental infections. In particular, non-critical femoral fractures fixed with plates and screws were performed in Wistar rats, which were then randomly divided into three groups: 1) the sham control (no infection, no treatment); 2) the control group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating non-drug-loaded functionalized nanoparticles (PSF); 3) the treated group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating vancomycin-loaded functionalized nanoparticles (AFN-PSF). After 8 weeks, bone healing and osteomyelitis were clinically assessed and evaluated by micro-CT, microbiological and histological analyses. Results: The sham group showed no signs of infection and complete bone healing. The PSF group failed to repair the infected fracture, displaying 75% of altered bone healing and severe signs of osteomyelitis. The AFN-PSF treated group reached 70% of fracture healing in the absence of signs of osteomyelitis, such as abscesses in the cortical and intraosseous compartments and bone necrosis with sequestra. Discussion: AFN-PSF sponges have proven effective in preventing the development of infected nonunion in vivo. The proposed nanotechnology for local administration of antibiotics can have a significant impact on patient health in the case of orthopedic infections.


Assuntos
Fibroínas , Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Ratos , Animais , Vancomicina/farmacologia , Staphylococcus epidermidis , Fibroínas/farmacologia , Resistência a Meticilina , Ratos Wistar , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Osteomielite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia
7.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577632

RESUMO

Aiming to understand and enhance the capacity of carbon dots (CDs) to transport through cell membranes and target subcellular organelles-in particular, mitochondria-a series of nitrogen-doped CDs were prepared by the one-step microwave-assisted pyrolysis of citric acid and ethylenediamine. Following optimization of the reaction conditions for maximum fluorescence, functionalization at various degrees with alkylated triphenylphosphonium functional groups of two different alkyl chain lengths afforded a series of functionalized CDs that exhibited either lysosome or mitochondria subcellular localization. Further functionalization with rhodamine B enabled enhanced fluorescence imaging capabilities in the visible spectrum and allowed the use of low quantities of CDs in relevant experiments. It was thus possible, by the appropriate selection of the alkyl chain length and degree of functionalization, to attain successful mitochondrial targeting, while preserving non-toxicity and biocompatibility. In vitro cell experiments performed on normal as well as cancer cell lines proved their non-cytotoxic character and imaging potential, even at very low concentrations, by fluorescence microscopy. Precise targeting of mitochondria is feasible with carefully designed CDs that, furthermore, are specifically internalized in cells and cell mitochondria of high transmembrane potential and thus exhibit selective uptake in malignant cells compared to normal cells.

8.
Pharmaceutics ; 13(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207727

RESUMO

An efficient doxorubicin (DOX) drug delivery system with specificity against tumor cells was developed, based on multi-walled carbon nanotubes (MWCNTs) functionalized with guanidinylated dendritic molecular transporters. Acid-treated MWCNTs (oxCNTs) interacted both electrostatically and through hydrogen bonding and van der Waals attraction forces with guanidinylated derivatives of 5000 and 25,000 Da molecular weight hyperbranched polyethyleneimine (GPEI5K and GPEI25K). Chemical characterization of these GPEI-functionalized oxCNTs revealed successful decoration with GPEIs all over the oxCNTs sidewalls, which, due to the presence of guanidinium groups, gave them aqueous compatibility and, thus, exceptional colloidal stability. These GPEI-functionalized CNTs were subsequently loaded with DOX for selective anticancer activity, yielding systems of high DOX loading, up to 99.5% encapsulation efficiency, while the DOX-loaded systems exhibited pH-triggered release and higher therapeutic efficacy compared to that of free DOX. Most importantly, the oxCNTs@GPEI5K-DOX system caused high and selective toxicity against cancer cells in a non-apoptotic, fast and catastrophic manner that cancer cells cannot recover from. Therefore, the oxCNTs@GPEI5K nanocarrier was found to be a potent and efficient nanoscale DOX delivery system, exhibiting high selectivity against cancerous cells, thus constituting a promising candidate for cancer therapy.

9.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036144

RESUMO

Oxidized multi-walled carbon nanotubes (oxCNTs) were functionalized by a simple non-covalent modification procedure using quaternized hyperbranched poly(ethyleneimine) derivatives (QPEIs), with various quaternization degrees. Structural characterization of these hybrids using a variety of techniques, revealed the successful and homogenous anchoring of QPEIs on the oxCNTs' surface. Moreover, these hybrids efficiently dispersed in aqueous media, forming dispersions with excellent aqueous stability for over 12 months. Their cytotoxicity effect was investigated on two types of gram(-) bacteria, an autotrophic (cyanobacterium Synechococcus sp. PCC 7942) and a heterotrophic (bacterium Escherichia coli). An enhanced, dose-dependent antibacterial and anti-cyanobacterial activity against both tested organisms was observed, increasing with the quaternization degree. Remarkably, in the photosynthetic bacteria it was shown that the hybrid materials affect their photosynthetic apparatus by selective inhibition of the Photosystem-I electron transport activity. Cytotoxicity studies on a human prostate carcinoma DU145 cell line and 3T3 mouse fibroblasts revealed that all hybrids exhibit high cytocompatibility in the concentration range, in which they also exhibit both high antibacterial and anti-cyanobacterial activity. Thus, QPEI-functionalized oxCNTs can be very attractive candidates as antibacterial and anti-cyanobacterial agents that can be used for potential applications in the disinfection industry, as well as for the control of harmful cyanobacterial blooms.

10.
Int J Pharm ; 585: 119465, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32497731

RESUMO

Cancer stem cells (CSCs) have garnered increasing attention over the past decade, as they are believed to play a crucial role in tumor progression and drug resistance. Accumulating evidence provides insight into the function of autophagy in maintenance and survival of CSCs. Here, we studied the impact of a mitochondriotropic triphenylphosphonium-functionalized dendrimeric nanocarrier on cultured breast cancer cell lines, grown either as adherent cells or as mammospheres that mimic a stem-like phenotype. The nanocarrier manifested a substantial cytotoxicity both alone as well as after encapsulation of chloroquine, a well-known autophagy inhibitor. The cytotoxic effects of the nanocarrier could be ascribed to interference with mitochondrial function. Importantly, mammospheres were selectively sensitive to encapsulated chloroquine and this depends on the expression of the gene encoding ATM kinase. Ataxia-telangiectasia mutated (ATM) kinase is an enzyme that functions as an essential signaling mediator that enables growth of cancer stem cells through the regulation of autophagy. We noted that this ATM-dependent sensitivity of mammospheres to encapsulated chloroquine was independent of the status of the tumor suppressor gene p53. Our study suggests that breast cancer stem cells, as they are modeled by mammospheres, are sensitive to encapsulated chloroquine, depending on the expression of the ATM kinase, which is thereby characterized as a potential biomarker for sensitivity to this type of treatment.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/biossíntese , Cloroquina/farmacologia , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Química Farmacêutica/métodos , Cloroquina/administração & dosagem , Proteínas de Ligação a DNA/genética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacologia , Feminino , Humanos , Compostos Organofosforados
11.
Pestic Biochem Physiol ; 165: 104535, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359556

RESUMO

There is a consensus on the urge for the discovery and assessment of alternative, improved sources of bioactivity that could be developed as plant protection products (PPPs), in order to combat issues that the agrochemical sector is facing. Based on the recent advances in nanotechnology, nanoparticles seem to have a great potential towards the development of the next generation nano-PPPs used as active ingredients (a.i.) per se or as nanocarriers in their formulation. Nonetheless, information on their mode(s)-of-action (MoA) and mechanisms of toxicity is yet largely unknown, representing a bottleneck in their further assessment and development. Therefore, we have undertaken the task to assess the fungitoxicity of hyperbranched poly(ethyleneimine) (HPEI), quaternized hyperbranched poly(ethyleneimine) (QPEI), and guanidinylated hyperbranched poly(ethyleneimine) (GPEI) nanoparticles to the soil-born plant pathogenic fungus Verticillium dahliae Kleb, and dissect their effects on its metabolism applying GC/EI/MS metabolomics. Results revealed that functionalization of HPEI nanoparticles with guanidinium end groups (GPEI) increases their toxicity to V. dahliae, while functionalization with quaternary ammonium end groups (QPEI) decreases it. The treatments with the nanoparticles affected the chemical homeostasis of the fungus, altering substantially its amino acid pool, energy production, and fatty acid content, causing additionally oxidative and osmotic stresses. To the best of our knowledge, this is the first report on the comparative toxicity of HPEI, QPEI, and GPEI to filamentous fungi applying metabolomics. The findings could be exploited in the study of the quantitative structure-activity relationship (QSAR) of HPEI-derived nanoparticles and their further development as nano-PPPs.


Assuntos
Aziridinas , Nanopartículas , Verticillium , Metabolômica , Doenças das Plantas , Solo
12.
Sci Rep ; 10(1): 8244, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427871

RESUMO

A facile, environment-friendly, versatile and reproducible approach to the successful oxidation of fullerenes (oxC60) and the formation of highly hydrophilic fullerene derivatives is introduced. This synthesis relies on the widely known Staudenmaier's method for the oxidation of graphite, to produce both epoxy and hydroxy groups on the surface of fullerenes (C60) and thereby improve the solubility of the fullerene in polar solvents (e.g. water). The presence of epoxy groups allows for further functionalization via nucleophilic substitution reactions to generate new fullerene derivatives, which can potentially lead to a wealth of applications in the areas of medicine, biology, and composite materials. In order to justify the potential of oxidized C60 derivatives for bio-applications, we investigated their cytotoxicity in vitro as well as their utilization as support in biocatalysis applications, taking the immobilization of laccase for the decolorization of synthetic industrial dyes as a trial case.


Assuntos
Citotoxinas/química , Fulerenos/química , Lacase/química , Animais , Biocatálise , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Citotoxinas/síntese química , Enzimas Imobilizadas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Oxirredução , Solubilidade
13.
Int J Pharm ; 574: 118912, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31809858

RESUMO

Drug-loaded thermosensitive liposomes are investigated as drug delivery systems in combination with local mild hyperthermia therapy due to their capacity to release their cargo at a specific temperature range (40-42 °C). Additional benefit can be achieved by the development of such systems that combine two different anticancer drugs, have cell penetration properties and, when heated, release their drug payload in a controlled fashion. To this end, liposomes were developed incorporating at low concentration (5 mol%) a number of monoalkylether phosphatidylcholine lipids, encompassing the platelet activating factor, PAF, and its analogues that induce thermoresponsiveness and have anticancer biological activity. These thermoresponsive liposomes were efficiently (>90%) loaded with doxorubicin (DOX), and their thermal properties, stability and drug release were investigated both at 37 ◦C and at elevated temperatures. In vitro studies of the most advantageous liposomal formulation containing the methylated PAF derivative (methyl-PAF, edelfosine), an established antitumor agent, were performed on human prostate cancer cell lines. This system exhibits controlled release of DOX at 40-42 °C, enhanced cell uptake due to the presence of methyl-PAF, and improved cell viability inhibition due to the combined action of both medications.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Lipossomos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Temperatura Alta , Humanos , Hipertermia Induzida/métodos , Lipídeos/administração & dosagem , Masculino , Células PC-3 , Fosfatidilcolinas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Temperatura
14.
Biomacromolecules ; 19(2): 315-328, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29313672

RESUMO

The low critical solution temperature phase transition (Tc) that is exhibited by thermosensitive polymers is strongly dependent on polymer concentration, pH, ionic strength, as well as the presence of specific molecules or ions in solution. Therefore, polymers with Tc values above 37 °C that are useful for hyperthermia therapy are not readily available. In the present study, temperature-sensitive hyperbranched polyethylenimine derivatives were developed through stepwise functionalization with isobutylamide groups. Although factors such as the concentration of polymer, sodium chloride, phosphate ions, and pH considerably affect the transition temperature, it was possible to obtain a hyperbranched derivative having the required Tc (38-39 °C) for the given aqueous medium required in cell experiments through careful selection of the degree of substitution. This thermosensitive derivative can encapsulate doxorubicin (DOX), a well-known anticancer agent, and was further studied as a temperature-triggered drug delivery system. Although the polymeric carrier showed no notable toxicity at temperatures either below or above the transition temperature, the thermoresponsive drug-loaded formulation exhibited increased DOX cellular uptake and improved in vitro cytotoxicity at 40 °C.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/química , Polietilenoimina/química , Temperatura de Transição , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Nanopartículas/efeitos adversos , Concentração Osmolar
15.
Pharmaceuticals (Basel) ; 10(4)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160846

RESUMO

Drug delivery systems that target subcellular organelles and, in particular, mitochondria are considered to have great potential in treating disorders that are associated with mitochondrial dysfunction, including cancer or neurodegenerative diseases. To this end, a novel hyperbranched mitochondriotropic nanocarrier was developed for the efficient co-delivery of two different (both in chemical and pharmacological terms) bioactive compounds. The carrier is based on hyperbranched poly(ethyleneimine) functionalized with triphenylphosphonium groups that forms ~100 nm diameter nanoparticles in aqueous media and can encapsulate doxorubicin (DOX), a well-known anti-cancer drug, and chloroquine (CQ), a known chemosensitizer with arising potential in anticancer medication. The anticancer activity of this system against two aggressive DOX-resistant human prostate adenocarcinoma cell lines and in in vivo animal studies was assessed. The co-administration of encapsulated DOX and CQ leads to improved cell proliferation inhibition at extremely low DOX concentrations (0.25 µΜ). In vivo experiments against DU145 human prostate cancer cells grafted on immunodeficient mice resulted in tumor growth arrest during the three-week administration period and no pervasive side effects. The findings put forward the potential of such targeted low dose combination treatments as a therapeutic scheme with minimal adverse effects.

17.
Bioconjug Chem ; 28(6): 1611-1624, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431209

RESUMO

The advantageous biological properties of hydroxyethyl starch (HES) triggered research interest toward the design and synthesis of drug delivery systems (DDSs) based on this polysaccharide. Convenient reaction schemes, including one-step reactions, led to the synthesis of HES conjugates with selected anticancer molecules or therapeutic proteins. Nanocapsules and hydrogels based on HES were also prepared and studied as prospective drug delivery systems. Formulations originating from these drug conjugates and also from nanocapsules and hydrogels loaded with drugs were characterized, highlighting the extension of their half-life in plasma, which is a critical property as far as their efficacy is concerned. Results obtained in vitro and in vivo proved promising, justifying the undertaking of additional experiments with such systems, including their multifunctionalization. The promising formulations that are discussed in this Topical Review is expected to further increase interest in applying HES for molecular constructing novel DDSs with enhanced efficacy, which may, in the future, find clinical applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Derivados de Hidroxietil Amido/uso terapêutico , Humanos , Hidrogéis/química , Derivados de Hidroxietil Amido/química , Nanocápsulas/química
18.
Biochem J ; 474(6): 1003-1016, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270562

RESUMO

Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations that are essential for the initiation of egg activation during mammalian fertilisation. A recent genetic study reported a male infertility case that was directly associated with a point mutation in the PLCζ C2 domain, where an isoleucine residue had been substituted with a phenylalanine (I489F). Here, we have analysed the effect of this mutation on the in vivo Ca2+ oscillation-inducing activity and the in vitro biochemical properties of human PLCζ. Microinjection of cRNA or recombinant protein corresponding to PLCζI489F mutant at physiological concentrations completely failed to cause Ca2+ oscillations and trigger development. However, this infertile phenotype could be effectively rescued by microinjection of relatively high (non-physiological) amounts of recombinant mutant PLCζI489F protein, leading to Ca2+ oscillations and egg activation. Our in vitro biochemical analysis suggested that the PLCζI489F mutant displayed similar enzymatic properties, but dramatically reduced binding to PI(3)P and PI(5)P-containing liposomes compared with wild-type PLCζ. Our findings highlight the importance of PLCζ at fertilisation and the vital role of the C2 domain in PLCζ function, possibly due to its novel binding characteristics.


Assuntos
Domínios C2 , Cálcio/metabolismo , Infertilidade Masculina/genética , Fosfoinositídeo Fosfolipase C/química , Mutação Puntual , Substituição de Aminoácidos , Animais , Sinalização do Cálcio , Bovinos , Feminino , Fertilização , Expressão Gênica , Humanos , Isoleucina/química , Isoleucina/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Masculino , Camundongos , Microinjeções , Oócitos/citologia , Oócitos/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , RNA Complementar/administração & dosagem , RNA Complementar/genética , RNA Complementar/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia
19.
Nanomedicine ; 13(3): 1289-1300, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27884636

RESUMO

Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood-brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial barriers shows great potential as a therapeutic strategy in a wide variety of diseases. Functionalizing nanoparticles with peptides allows for more efficient targeting to specific organs. We have evaluated the hemocompatibilty, cytotoxicity, endothelial uptake, efficacy of delivery and safety of liposome, hyperbranched polyester, poly(glycidol) and acrylamide-based nanoparticles functionalized with peptides targeting brain endothelial receptors, in vitro and in vivo. We used an ELISA-based method for the detection of nanoparticles in biological fluids, investigating the blood clearance rate and in vivo biodistribution of labeled nanoparticles in the brain after intravenous injection in Wistar rats. Herein, we provide a detailed report of in vitro and in vivo observations.


Assuntos
Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Lipossomos/metabolismo , Nanopartículas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Portadores de Fármacos , Humanos , Lipossomos/análise , Lipossomos/farmacocinética , Masculino , Nanopartículas/análise , Peptídeos/análise , Peptídeos/farmacocinética , Ratos Wistar , Distribuição Tecidual
20.
Contrast Media Mol Imaging ; 2017: 6951240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29445321

RESUMO

The aim of this study was to develop a dual-modality PET/MR imaging probe by radiolabeling iron oxide magnetic nanoparticles (IONPs), surface functionalized with water soluble stabilizer 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), with the positron emitter Gallium-68. Magnetite nanoparticles (Fe3O4 MNPs) were synthesized via coprecipitation method and were stabilized with DPD. The Fe3O4-DPD MNPs were characterized based on their structure, morphology, size, surface charge, and magnetic properties. In vitro cytotoxicity studies showed reduced toxicity in normal cells, compared to cancer cells. Fe3O4-DPD MNPs were successfully labeled with Gallium-68 at high radiochemical purity (>91%) and their stability in human serum and in PBS was demonstrated, along with their further characterization on size and magnetic properties. The ex vivo biodistribution studies in normal Swiss mice showed high uptake in the liver followed by spleen. The acquired PET images were in accordance with the ex vivo biodistribution results. Our findings indicate that 68Ga-Fe3O4-DPD MNPs could serve as an important diagnostic tool for biomedical imaging.


Assuntos
Meios de Contraste , Difosfonatos , Compostos Férricos , Radioisótopos de Gálio , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Difosfonatos/química , Difosfonatos/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Radioisótopos de Gálio/química , Radioisótopos de Gálio/farmacologia , Células HEK293 , Humanos , Marcação por Isótopo , Camundongos , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...