Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(5): 226, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642120

RESUMO

Cucurbits are subject to a variety of stresses that limit their sustainable production, despite their important role in ensuring food security and nutrition. Plant stress tolerance can be enhanced through fungal endophytes. In this study, two endophytes isolated from wild plant roots, were tested to determine their effect on the growth promotion of cucumber (Cucumis sativus L.) plants. The phylogenetic analysis revealed that the designated isolates were Aspergillus elegans and Periconia macrospinosa. The results of the Plant Growth Promoting Fungal (PGPF) tests showed that both Aspergillus elegans and Periconia macrospinosa have a zinc solubilizing capacity, especially A. elegans, with a solubilization index higher than 80%. Also, both have a high salt tolerance (10-15% NaCl for P. macrospinosa and A. elegans, respectively), cellulolytic activity, and inhibition indices of 40-64.53%. A. elegans and P. macrospinosa had antagonistic effects against the cucumber phytopathogenic fungi Verticillium dahliae and Fusarium oxysporum, respectively. However, A. elegans and P. macrospinosa didn't exhibit certain potential plant benefits, such as the production of hydrogen cyanide (HCN) and phosphate solubilization. The chlorophyll content and growth parameters of two-month-old cucumber plants inoculated with the fungal species were significantly better than those of the controls (non-inoculated); the shoot dry weights of inoculated plants were increased by 138% and 170% for A. elegans and P. macrospinosa, respectively; and the root colonization by fungal endophytes has also been demonstrated. In addition to the fact that P. macrospinosa has long been known as PGPF, this is the first time that the ability of A. elegans to modulate host plant growth has been demonstrated, with the potential to be used as a biofertilizer in sustainable agriculture.


Assuntos
Ascomicetos , Aspergillus , Cucumis sativus , Endófitos , Cucumis sativus/microbiologia , Filogenia , Raízes de Plantas/microbiologia
2.
J Fungi (Basel) ; 9(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623629

RESUMO

The exploration of the western forests of Algeria led to the remarkable discovery of the first occurrence of Lepista sordida, an edible wild mushroom of significant culinary importance for the local community, traditionally consumed in its natural state. This discovery was made possible through the use of various methods, including macroscopic observations (revealing a violet color) as well as microscopic observations conducted using scanning electron microscopy (SEM), revealing a cylindrical shape with distinct contours. Additionally, molecular analyses were conducted. Genomic DNA was extracted from the mycelium, followed by DNA amplification using specific primers targeting the internal transcribed spacer region (ITS1 and ITS2). After PCR reactions and sequencing of the obtained amplicons, the nucleotide sequences of the mycelium were submitted to the GenBank database of NCBI with the assigned accession number: MZ928450.1. These sequences were subsequently used to construct the phylogenetic tree. Furthermore, an in-depth study of physicochemical parameters was undertaken to determine the optimal conditions for cultivating the mycelium of this edible wild mushroom, including pH, temperature, relative humidity, and light. Different temperatures were examined: 20, 25, 30, 35, 40, and 45 °C. The effect of pH on mycelium growth was studied using a PDA agar medium with buffered values of 4, 5, 5.6, 6, 7, and 8. Similarly, six levels of relative humidity were tested: 14, 50, 74, 80, 95, and 100%. A study on the impact of light on mycelium growth was conducted by exposing Petri dishes inoculated with PDA to a light intensity of 500 lux for 5, 10, 15, 20, and 24 h. The results clearly demonstrated that variations in these different physicochemical parameters significantly influenced mycelium growth. For the Lepista sordida strain, growth was favored at pH levels of 4, 5, 6, and 6, with no growth observed at pH 7 and 8. The optimal temperature range for mycelium growth of Lepista sordida was 20-25 °C, while no growth was observed at 30, 35, 40, and 45 °C. Relative humidity levels of 74, 80, and 95% showed no significant differences. Optimization of mycelium growth and primordia production in Lepista sordida were successfully achieved. Optimal conditions for the primordia phase were identified as 25 °C, with humidity ranging from 90 to 95%. A nutritional analysis of fresh sporophores was conducted using established analytical methods. Notably, the nutritional composition of Lepista sordida sporophores exhibited high significance for the following parameters: moisture content (67.23 ± 1.90%), ash content (9.35 ± 0.66%), fat content (3.25 ± 0.24%), protein content (17.22 ± 0.38%), and carbohydrate content (63.83 ± 1.23%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...