Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-503414

RESUMO

The SARS-CoV-2 variant, Omicron (B.1.1.529), rapidly swept the world since its emergence. Compared with previous variants, Omicron has a high number of mutations, especially those in its spike glycoprotein that drastically dampen or abolish the efficacy of currently available vaccines and therapeutic antibodies. Several major sublineages of Omicron involved, including BA.1, BA.2, BA.2.12.1, BA.3 and BA.4/BA.5, rapidly changing the global and regional landscape of the pandemic. Although vaccines are available, therapeutic antibodies remain critical for infected and especially hospitalized patients. To address this, we have designed and generated a panel of human/humanized therapeutic bispecific antibodies against Omicron and its sub-lineage variants, with activity spectrum against other lineages. Among these, the top clone CoV2-0213 has broadly potent activities against multiple SARS-CoV-2 ancestral and Omicron lineages, including BA.1, BA.1.1, BA.2, BA.2.12.1, BA.3 and BA.4/BA.5. We have solved the cryo-EM structure of the lead bi-specific antibody CoV-0213 and its major Fab arm MB.02. Three-dimensional structural analysis shows distinct epitope of antibody - spike receptor binding domain (RBD) interactions, and demonstrates that both Fab fragments of the same molecule of CoV2-0213 can target the same spike trimer simultaneously, further corroborating its mechanism of action. CoV2-0213 represents a unique and potent broad-spectrum SARS-CoV-2 neutralizing bispecific antibody (nbsAb) against the currently circulating major Omicron variants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.3 and BA.4/BA.5), while maintaining activity against certain ancestral lineages (WT/WA-1, Delta), and to some degree other {beta}-coronavirus species (SARS-CoV). CoV2-0213 is primarily human and ready for translational testing as a countermeasure against the ever-evolving pathogen.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-500616

RESUMO

As the immune protection conferred by first booster shot wanes over time and new Omicron subvariant emerges with stronger immune evasion, the need for variant-adapted COVID vaccine booster is increasingly imminent. However, the rapid replacement of dominant Omicron subvariants (from BA.1 to BA.2, then BA.2.12.1 and now BA.4/5) poses a great challenge to update COVID vaccine targeting the fast-evolving variants while maintaining potency against existing variants. It is a crucial question to ask which variant-based antigen(s) to use in the next generation COVID vaccine to elicit potent and broad response to past, present, and potential rising variants. Bivalent vaccine candidates have been under active clinical testing such as Modern mRNA-1273.214. In this study, we generate a Delta + BA.2 bivalent mRNA vaccine candidate and tested in animals. We compare the antibody response elicited by ancestral (wild type, WT), Delta, BA.2 spike based monovalent or Delta & BA.2 bivalent mRNA boosters against Omicron BA.2, BA.2.12.1 and BA.4/5 subvariants. In mice pre-immunized with two doses of WT lipid nanoparticle mRNA (LNP-mRNA), all three monovalent and one bivalent boosters elevated Omicron neutralizing antibody titers to various degree. The boosting effect of Delta and BA.2 specific monovalent or bivalent LNP-mRNAs is universally higher than that of WT LNP-mRNA, which modestly increased antibody titer in neutralization assays of Omicron BA.5, BA.2.12.1 and BA.2. The Delta & BA.2 bivalent LNP-mRNA showed better performance of titer boosting than either monovalent counterparts, which is especially evident in neutralization of Omicron BA.4 or BA.5. Interestingly compared to the neutralizing titers of BA.2 and BA.2.12.1 pseudovirus, BA.2 monovalent but not Delta & BA.2 bivalent booster suffered a significant loss of BA.4/5 neutralizing titer, indicative of broader activity of bivalent booster and strong neutralization evasion of Omicron BA.4 or BA.5 even in the BA.2 mRNA vaccinated individuals. These data provide evaluation of WT, Delta, BA.2 monovalent and bivalent boosters antibody potency against Omicron BA.2, BA.2.12.1 and BA.4/5 subvariants.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-491038

RESUMO

Although successful COVID-19 vaccines have been developed, multiple pathogenic coronavirus species exist, urging for development of multi-species coronavirus vaccines. Here we developed prototype LNP-mRNA vaccine candidates against SARS-CoV-2 (Delta variant), SARS-CoV and MERS-CoV, and test how multiplexing of these LNP-mRNAs can induce effective immune responses in animal models. A triplex scheme of LNP-mRNA vaccination induced antigen-specific antibody responses against SARS-CoV-2, SARS-CoV and MERS-CoV, with a relatively weaker MERS-CoV response in this setting. Single cell RNA-seq profiled the global systemic immune repertoires and the respective transcriptome signatures of multiplexed vaccinated animals, which revealed a systemic increase in activated B cells, as well as differential gene expression signatures across major adaptive immune cells. Sequential vaccination showed potent antibody responses against all three species, significantly stronger than simultaneous vaccination in mixture. These data demonstrated the feasibility, antibody responses and single cell immune profiles of multi-species coronavirus vaccination. The direct comparison between simultaneous and sequential vaccination offers insights on optimization of vaccination schedules to provide broad and potent antibody immunity against three major pathogenic coronavirus species. One sentence summaryMultiplexed mRNA vaccination in simultaneous and sequential modes provide broad and potent immunity against pathogenic coronavirus species.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-485418

RESUMO

The Omicron sub-lineage BA.2 of SARS-CoV-2 has recently become dominant across many areas in the world in the on-going waves of COVID-19. Compared to the ancestral/wild-type (WT) virus, Omicron lineage variants, both BA.1 and BA.2, contain high number of mutations, especially in the spike protein, causing significant immune escape that leads to substantial reduction of vaccine and antibody efficacy. Because of this antigenic drift, BA.2 exhibited differential resistance profile to monoclonal antibodies than BA.1. Thus, it is important to understand whether the immunity elicited by currently available vaccines are effective against the BA.2 subvariant. We directly tested the heterotypic vaccination responses against Omicron BA.2, using vaccinated serum from animals receiving WT- and variant-specific mRNA vaccine in lipid nanoparticle (LNP) formulations. Omicron BA.1 and BA.2 antigen showed similar reactivity to serum antibodies elicited by two doses of WT, B.1.351 and B.1.617 LNP-mRNAs. Neutralizing antibody titers of B.1.351 and B.1.617 LNP-mRNA were ~2-fold higher than that of WT LNP-mRNA. Both homologous boosting with WT LNP-mRNA and heterologous boosting with BA.1 LNP-mRNA substantially increased waning immunity of WT vaccinated mice against both BA.1 and BA.2 subvariants. The BA.1 LNP-mRNA booster was ~3-fold more efficient than WT LNP-mRNA at elevating neutralizing antibody titers of BA.2. Together, these data provided a direct preclinical evaluation of WT and variant-specific LNP-mRNAs in standard two-dose and as boosters against BA.1 and BA.2 subvariants.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-484817

RESUMO

The Omicron variant (B.1.1.529) of SARS-CoV-2 rapidly becomes dominant globally. Its extensive mutations confer severe efficacy reduction to most of existing antibodies or vaccines. Here, we developed RAMIHM, a highly efficient strategy to generate fully human monoclonal antibodies (mAbs), directly applied it with Omicron-mRNA immunization, and isolated three potent and specific clones against Omicron. Rapid mRNA immunization elicited strong anti-Omicron antibody response in humanized mice, along with broader anti-coronavirus activity. Customized single cell BCR sequencing mapped the clonal repertoires. Top-ranked clones collectively from peripheral blood, plasma B and memory B cell populations showed high rate of Omicron-specificity (93.3%) from RAMIHM-scBCRseq. Clone-screening identified three highly potent neutralizing antibodies that have low nanomolar affinity for Omicron RBD, and low ng/mL level IC50 in neutralization, more potent than majority of currently approved or authorized clinical RBD-targeting mAbs. These lead mAbs are fully human and ready for downstream IND-enabling and/or translational studies.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480449

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has high transmissibility and recently swept the globe. Due to the extensive number of mutations, this variant has high level of immune evasion, which drastically reduced the efficacy of existing antibodies and vaccines. Thus, it is important to test an Omicron-specific vaccine, evaluate its immune response against Omicron and other variants, and compare its immunogenicity as boosters with existing vaccine designed against the reference wildtype virus (WT). Here, we generated an Omicron-specific lipid nanoparticle (LNP) mRNA vaccine candidate, and tested its activity in animals, both alone and as a heterologous booster to existing WT mRNA vaccine. Our Omicron-specific LNP-mRNA vaccine elicited strong and specific antibody response in vaccination-naive mice. Mice that received two-dose WT LNP-mRNA, the one mimicking the commonly used Pfizer/Moderna mRNA vaccine, showed a >40-fold reduction in neutralization potency against Omicron variant than that against WT two weeks post second dose, which further reduced to background level >3 months post second dose. As a booster shot for two-dose WT mRNA vaccinated mice, a single dose of either a homologous booster with WT LNP-mRNA or a heterologous booster with Omicron LNP-mRNA restored the waning antibody response against Omicron, with over 40-fold increase at two weeks post injection as compared to right before booster. Interestingly, the heterologous Omicron LNP-mRNA booster elicited neutralizing titers 10-20 fold higher than the homologous WT booster against the Omicron variant, with comparable titers against the Delta variant. All three types of vaccination, including Omicron mRNA alone, WT mRNA homologous booster, and Omicron heterologous booster, elicited broad binding antibody responses against SARS-CoV-2 WA-1, Beta, and Delta variants, as well as other Betacoronavirus species such as SARS-CoV, but not Middle East respiratory syndrome coronavirus (MERS-CoV). These data provided direct proof-of-concept assessments of an Omicron-specific mRNA vaccination in vivo, both alone and as a heterologous booster to the existing widely-used WT mRNA vaccine form.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473733

RESUMO

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identified two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generated a bispecific antibody. Lead antibodies showed strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solved several cryo-EM structures at [~]3 [A] resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and revealed distinct epitopes, binding patterns, and conformations. The lead clones also showed potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generated and characterized a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-471028

RESUMO

Lipid-nanoparticle(LNP)-mRNA vaccines offer protection against COVID-19. However, multiple variant lineages caused widespread breakthrough infections. There is no report on variant-specific vaccines to date. Here, we generated LNP-mRNAs specifically encoding wildtype, B.1.351 and B.1.617 SARS-CoV-2 spikes, and systematically studied their immune responses in animal models. All three LNP-mRNAs induced potent antibody responses in mice. However, WT-LNP-mRNA vaccination showed reduced neutralization against B.1.351 and B.1.617; and B.1.617-specific vaccination showed differential neutralization. All three vaccine candidates elicited antigen-specific CD8 and CD4 T cell responses. Single cell transcriptomics of B.1.351-LNP-mRNA and B.1.617-LNP-mRNA vaccinated animals revealed a systematic landscape of immune cell populations and global gene expression. Variant-specific vaccination induced a systemic increase in reactive CD8 T cell population, with a strong signature of transcriptional and translational machineries in lymphocytes. BCR-seq and TCR-seq unveiled repertoire diversity and clonal expansions in vaccinated animals. These data provide direct systems immune profiling of variant-specific LNP-mRNA vaccination in vivo.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-470640

RESUMO

T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoires composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of viral infection such as SARS-CoV-2. To determine signatures associated with COVID-19 disease severity, here we performed a large-scale analysis of over 4.7 billion sequences across 2,130 TCR repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identified and characterized convergent COVID-19 associated CDR3 gene usages, specificity groups, and sequence patterns. T cell clonal expansion was found to be associated with upregulation of T cell effector function, TCR signaling, NF-kB signaling, and Interferon-gamma signaling pathways. Machine learning approaches accurately predicted disease severity for patients based on TCR sequence features, with certain high-power models reaching near-perfect AUROC scores across various predictor permutations. These analyses provided an integrative, systems immunology view of T cell adaptive immune responses to COVID-19.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-447982

RESUMO

T follicular helper (Tfh) cells are the conventional drivers of protective, germinal center (GC)-based antiviral antibody responses. However, loss of Tfh cells and GCs has been observed in patients with severe COVID-19. As T cell-B cell interactions and immunoglobulin class switching still occur in these patients, non-canonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both Tfh-dependent and -independent antibodies were induced against SARS-CoV-2 as well as influenza A virus. Tfh-independent responses were mediated by a population we call lymph node (LN)-Th1 cells, which remain in the LN and interact with B cells outside of GCs to promote high-affinity but broad-spectrum antibodies. Strikingly, antibodies generated in the presence and absence of Tfh cells displayed similar neutralization potency against homologous SARS-CoV-2 as well as the B.1.351 variant of concern. These data support a new paradigm for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GCs and even compensate for GCs damaged by viral inflammation. One-Sentence SummaryComplementary pathways of antibody production mediate neutralizing responses to SARS-CoV-2.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-248575

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has become a major threat across the globe. Here, we developed machine learning approaches to identify key pathogenic regions in coronavirus genomes. We trained and evaluated 7,562,625 models on 3,665 genomes including SARS-CoV-2, MERS-CoV, SARS-CoV and other coronaviruses of human and animal origins to return quantitative and biologically interpretable signatures at nucleotide and amino acid resolutions. We identified hotspots across the SARS-CoV-2 genome including previously unappreciated features in spike, RdRp and other proteins. Finally, we integrated pathogenicity genomic profiles with B cell and T cell epitope predictions for enrichment of sequence targets to help guide vaccine development. These results provide a systematic map of predicted pathogenicity in SARS-CoV-2 that incorporates sequence, structural and immunological features, providing an unbiased collection of genetic elements for functional studies. This metavirome-based framework can also be applied for rapid characterization of new coronavirus strains or emerging pathogenic viruses.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-243451

RESUMO

The COVID-19 pandemic affects millions of people worldwide with a rising death toll. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), uses its nonstructural protein 1 (Nsp1) to redirect host translation machinery to the viral RNA by binding to the ribosome and suppressing cellular, but not viral, protein synthesis through yet unknown mechanisms. We show here that among all viral proteins, Nsp1 has the largest impact on host viability in the cells of human lung origin. Differential expression analysis of mRNA-seq data revealed that Nsp1 broadly alters the transcriptome in human cells. The changes include repression of major gene clusters in ribosomal RNA processing, translation, mitochondria function, cell cycle and antigen presentation; and induction of factors in transcriptional regulation. We further gained a mechanistic understanding of the Nsp1 function by determining the cryo-EM structure of the Nsp1-40S ribosomal subunit complex, which shows that Nsp1 inhibits translation by plugging the mRNA entry channel of the 40S. We also determined the cryo-EM structure of the 48S preinitiation complex (PIC) formed by Nsp1, 40S, and the cricket paralysis virus (CrPV) internal ribosome entry site (IRES) RNA, which shows that this 48S PIC is nonfunctional due to the incorrect position of the 3 region of the mRNA. Results presented here elucidate the mechanism of host translation inhibition by SARS-CoV-2, provide insight into viral protein synthesis, and furnish a comprehensive understanding of the impacts from one of the most potent pathogenicity factors of SARS-CoV-2. HighlightsORF screen identified Nsp1 as a major cellular pathogenicity factor of SARS-CoV-2 Nsp1 broadly alters the gene expression programs in human cells Nsp1 inhibits translation by blocking mRNA entry channel Nsp1 prevents physiological conformation of the 48S PIC

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-030684

RESUMO

Since the emergence of SARS-CoV-2 in December 2019, Coronavirus Disease-2019 (COVID-19) has rapidly spread across the globe. Epidemiologic studies have demonstrated that age is one of the strongest risk factors influencing the morbidity and mortality of COVID-19. Here, we interrogate the transcriptional features and cellular landscapes of the aging human lung through integrative analysis of bulk and single-cell transcriptomics. By intersecting these age-associated changes with experimental data on host interactions between SARS-CoV-2 or its relative SARS-CoV, we identify several age-associated factors that may contribute to the heightened severity of COVID-19 in older populations. We observed that age-associated gene expression and cell populations are significantly linked to the heightened severity of COVID-19 in older populations. The aging lung is characterized by increased vascular smooth muscle contraction, reduced mitochondrial activity, and decreased lipid metabolism. Lung epithelial cells, macrophages, and Th1 cells decrease in abundance with age, whereas fibroblasts, pericytes and CD4+ Tcm cells increase in abundance with age. Several age-associated genes have functional effects on SARS-CoV replication, and directly interact with the SARS-CoV-2 proteome. Interestingly, age-associated genes are heavily enriched among those induced or suppressed by SARS-CoV-2 infection. These analyses illuminate potential avenues for further studies on the relationship between the aging lung and COVID-19 pathogenesis, which may inform strategies to more effectively treat this disease.

14.
Protein & Cell ; (12): 589-598, 2015.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-757212

RESUMO

Uncontrolled fibrosis of skin and internal organs is the main characteristic of scleroderma, and collagen is a major extracellular matrix protein that deposits in the fibrotic organs. As the chaperone of collagen, heat shock protein 47 (HSP47) is closely related with the development of fibrosis. To explore the potential function of HSP47 in the pathogenesis of scleroderma, the clinical, in vivo and in vitro studies were performed. In clinical, the increased mRNA level of HSP47 was observed in the skin fibroblasts and PBMC from scleroderma patients, and the enhanced protein level of HSP47 was also detected in the skin biopsy and plasma of the above patients. Unexpectedly, the enhanced levels of HSP47 were positively correlated with the presence of anti-centromere antibody in scleroderma patients. Moreover, a high expression of HSP47 was found in the skin lesion of BLM-induced scleroderma mouse model. Further in vitro studies demonstrated that HSP47 knockdown could block the intracellular and extracellular collagen over-productions induced by exogenous TGF-β. Therefore, the results in this study provide direct evidence that HSP47 is involved in the pathogenesis of scleroderma. The high expression of HSP47 can be detected in the circulatory system of scleroderma patients, indicating that HSP47 may become a pathological marker to assess the progression of scleroderma, and also explain the systemic fibrosis of scleroderma. Meanwhile, collagen over-expression is blocked by HSP47 knockdown, suggesting the possibility that HSP47 can be a potential therapeutic target for scleroderma.


Assuntos
Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Biópsia , Western Blotting , Células Cultivadas , Colágeno , Metabolismo , Fibroblastos , Metabolismo , Fibrose , Proteínas de Choque Térmico HSP47 , Sangue , Genética , Metabolismo , Leucócitos Mononucleares , Metabolismo , Camundongos Endogâmicos C3H , Células NIH 3T3 , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escleroderma Sistêmico , Sangue , Genética , Metabolismo , Pele , Metabolismo , Patologia , Fator de Crescimento Transformador beta , Farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...