Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21235, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481784

RESUMO

The uncontrolled discharge of industrial wastes causes the accumulation of high heavy metal concentrations in soil and water, leading to many health issues. In the present study, a Gram-negative Aeromonas sobria was isolated from heavily contaminated soil in the Tanjaro area, southwest of Sulaymaniyah city in the Kurdistan Region of Iraq; then, we assessed its ability to uptake heavy metals. A. sobria was molecularly identified based on the partial amplification of 16S rRNA using novel primers. The sequence was aligned with 33 strains to analyze phylogenetic relationships by maximum likelihood. Based on maximum tolerance concentration (MTC), A. sobria could withstand Zn, Cu, and Ni at concentrations of 5, 6, and 8 mM, respectively. ICP-OES data confirmed that A. sobria reduced 54.89% (0.549 mM) of the Cu, 62.33% (0.623 mM) of the Ni, and 36.41% (0.364 mM) of the Zn after 72 h in the culture medium. Transmission electron microscopy (TEM) showed that A. sobria accumulated both Cu and Ni, whereas biosorption was suggested for the Zn. These findings suggest that metal-resistant A. sobria could be a promising candidate for heavy metal bioremediation in polluted areas. However, more broadly, research is required to assess the feasibility of exploiting A. sobria in situ.


Assuntos
Metais Pesados , RNA Ribossômico 16S/genética , Filogenia , Iraque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...