Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156811

RESUMO

Merkel cell polyomavirus (MCPyV) is the only polyomavirus known to be associated with tumorigenesis in humans. Similarly to other polyomaviruses, MCPyV expresses a large tumor antigen (LT-Ag) that, together with a small tumor antigen (sT-Ag), contributes to cellular transformation and that is of critical importance for the initiation of the viral DNA replication. Understanding the cellular protein network regulated by MCPyV early proteins will significantly contribute to our understanding of the natural MCPyV life cycle as well as of the mechanisms by which the virus contributes to cellular transformation. We here describe KRAB-associated protein 1 (Kap1), a chromatin remodeling factor involved in cotranscriptional regulation, as a novel protein interaction partner of MCPyV T antigens sT and LT. Kap1 knockout results in a significant increase in the level of viral DNA replication that is highly suggestive of Kap1 being an important host restriction factor during MCPyV infection. Differently from other DNA viruses, MCPyV gene expression is unaffected in the absence of Kap1 and Kap1 does not associate with the viral genome. Instead, we show that in primary normal human dermal fibroblast (nHDF) cells, MCPyV DNA replication, but not T antigen expression alone, induces ataxia telangiectasia mutated (ATM) kinase-dependent Kap1 S824 phosphorylation, a mechanism that typically facilitates repair of double-strand breaks in heterochromatin by arresting the cells in G2 We show that MCPyV-induced inhibition of cell proliferation is mainly conferred by residues within the origin binding domain and thereby by viral DNA replication. Our data suggest that phosphorylation of Kap1 and subsequent Kap1-dependent G2 arrest/senescence represent host defense mechanisms against MCPyV replication in nHDF cells.IMPORTANCE We here describe Kap1 as a restriction factor in MCPyV infection. We report a novel, indirect mechanism by which Kap1 affects MCPyV replication. In contrast with from other DNA viruses, Kap1 does not associate with the viral genome in MCPyV infection and has no impact on viral gene expression. In MCPyV-infected nHDF cells, Kap1 phosphorylation (pKap1 S824) accumulates because of genomic stress mainly induced by viral DNA replication. In contrast, ectopic expression of LT or LT MCPyV mutants, previously shown to be important for induction of genotoxic stress, does not result in a similar extent of pKap1 accumulation. We show that cells actively replicating MCPyV accumulate pKap1 (in a manner dependent on the presence of ATM) and display a senescence phenotype reflected by G2 arrest. These results are supported by transcriptome analyses showing that LT antigen, in a manner dependent on the presence of Kap1, induces expression of secreted factors, which is known as the senescence-associated secretory phenotype (SASP).


Assuntos
Senescência Celular , Replicação do DNA , Fibroblastos/virologia , Poliomavírus das Células de Merkel/fisiologia , Proteína 28 com Motivo Tripartido/genética , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Poliomavírus das Células de Merkel/genética , Pele/citologia , Proteína 28 com Motivo Tripartido/metabolismo , Replicação Viral
2.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801860

RESUMO

Merkel cell polyomavirus (MCPyV) is the major cause for Merkel cell carcinoma (MCC), a rare but highly aggressive skin cancer predominantly found in elderly and immunosuppressed patients. The early viral gene products large T-antigen (LT) and small T-antigen (sT) are important for efficient viral DNA replication, and both contribute to transformation processes. These functions are executed mainly through interactions with host factors. Here, we identify the cellular ubiquitin-specific processing protease 7 (Usp7) as a new interaction partner of the MCPyV LT. Using glutathione S-transferase pulldown experiments, we show that MCPyV LT directly binds to Usp7 and that N- as well as C-terminal regions of LT bind to the TRAF (tumor necrosis factor receptor-associated) domain of Usp7. We demonstrate that endogenous Usp7 coprecipitates with MCPyV T-antigens and relocalizes to viral DNA replication centers in cells actively replicating MCPyV genomes. We show that Usp7 does not alter ubiquitination levels of the T-antigens; however, Usp7 binding increases the binding affinity of LT to the origin of replication, thereby negatively regulating viral DNA replication. Together, these data identify Usp7 as a restriction factor of MCPyV replication. In contrast to other DNA viruses, Usp7 does not affect MCPyV gene expression via its ubiquitination activity but influences MCPyV DNA replication solely via a novel mechanism that modulates binding of LT to viral DNA.IMPORTANCE MCPyV is the only human polyomavirus that is associated with cancer; the majority of Merkel cell cancers have a viral etiology. While much emphasis was placed on investigations to understand the transformation process by MCPyV oncoproteins and cellular factors, we have only limited knowledge of cellular factors participating in the MCPyV life cycle. Here, we describe Usp7, a cellular deubiquitination enzyme, as a new factor involved in MCPyV replication. Usp7 is known in the context of large DNA tumor viruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus, to restrict viral replication. Similar to EBV, where Usp7 binding to EBNA1 increases EBNA1 binding affinity to viral DNA, we find MCPyV LT binding to the origin of replication to be increased in the presence of Usp7, resulting in restriction of viral DNA replication. However, Usp7-induced restriction of MCPyV replication is independent of its enzymatic activity, thereby constituting a novel mechanism of Usp7-induced restriction of viral replication.


Assuntos
Antígenos Virais de Tumores/metabolismo , DNA Viral/metabolismo , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Replicação Viral/fisiologia , Carcinoma de Célula de Merkel/virologia , Linhagem Celular , Proliferação de Células , Células HEK293 , Humanos , Poliomavírus das Células de Merkel/crescimento & desenvolvimento , Infecções por Polyomavirus/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Infecções Tumorais por Vírus/virologia
3.
Cell Host Microbe ; 21(3): 321-333, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279344

RESUMO

Pregnant women are at high risk for severe influenza disease outcomes, yet insights into the underlying mechanisms are limited. Here, we present models of H1N1 infection in syngenic and allogenic pregnant mice; infection in the latter mirrors the severe course of 2009 pandemic influenza in pregnant women. We found that the anti-viral immune response in the pregnant host was significantly restricted as compared to the non-pregnant host. This included a reduced type I interferon response as well as impaired migration of CD8+ T cells into the lung. The multi-faceted failure to mount an anti-viral response in allogenic pregnant mice resulted in a less stringent selective environment that promoted the emergence of 2009 H1N1 virus variants that specifically counteract type I interferon response and mediate increased viral pathogenicity. These insights underscore the importance of influenza vaccination compliance in pregnant women and may open novel therapeutic avenues.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Mutação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Gravidez , Seleção Genética , Virulência
4.
PLoS One ; 9(10): e109018, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25272036

RESUMO

Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315.BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315.BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient ΔdblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma.


Assuntos
Medula Óssea/patologia , Proliferação de Células , Eosinófilos/citologia , Megacariócitos/citologia , Mieloma Múltiplo/patologia , Animais , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...