Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 187: 105187, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127049

RESUMO

Sulfoxaflor (Isoclast™ active) is a sulfoximine insecticide that is active on a broad range of sap-feeding insects, including species that exhibit reduced susceptibility to currently available insecticides. Colonies of Myzus persicae (green peach aphid) were established from aphids collected in the field from peach (Prunus persica) and nectarine (Prunus persica var. nucipersica) orchards in France, Italy and Spain. The presence of the nicotinic acetylcholine receptor (nAChR) point mutation R81T was determined for all the colonies. Eight of the 35 colonies collected were susceptible relative to R81T (i.e., R81T absent), three of the colonies were found to be homozygous for R81T while 24 colonies had R81T present in some proportion (heterozygous). Sulfoxaflor and imidacloprid were tested in the laboratory against these M. persicae field colonies, which exhibited a wide range of susceptibilities (sulfoxaflor RR = 0.6 to 61, imidacloprid RR = 0.7 to 986) (resistance ratios, RR) to both insecticides. Although sulfoxaflor was consistently more active than imidacloprid against these field collected M. persicae, there was a statistically significant correlation across all colonies between the RRs for imidacloprid and sulfoxaflor (Pearson's r = 0.939, p < 0.0001). However, when a larger group of the colonies from Spain possessing R81T were analyzed, there was no correlation observed for the RRs between imidacloprid and sulfoxaflor (r = 0.2901, p = 0.3604). Thus, consistent with prior studies, the presence of R81T by itself is not well correlated with altered susceptibility to sulfoxaflor. In field trials, sulfoxaflor (24 and 36 gai/ha) was highly effective (~avg. 88-96% control) against M. persicae, demonstrating similar levels of efficacy as flonicamid (60-70 gai/ha) and spirotetramat (100-180 gai/ha) at 13-15 days after application, in contrast to imidacloprid (110-190 gai/ha) and acetamiprid (50-75 gai/ha) with lower levels of efficacy (~avg. 62-67% control). Consequently, sulfoxaflor is an effective tool for use in insect pest management programs for M. persicae. However, it is recommended that sulfoxaflor be used in the context of an insecticide resistance management program as advocated by the Insecticide Resistance Action Committee involving rotation with insecticides possessing other modes of action (i.e., avoiding rotation with other Group 4 insecticides) to minimize the chances for resistance development and to extend its future utility.


Assuntos
Afídeos , Inseticidas , Receptores Nicotínicos , Animais , Afídeos/genética , Inseticidas/farmacologia , Mutação , Neonicotinoides , Nitrocompostos , Piridinas , Receptores Nicotínicos/genética , Compostos de Enxofre
2.
Pestic Biochem Physiol ; 178: 104924, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446200

RESUMO

The sulfoximines, as exemplified by sulfoxaflor (Isoclast™active), are a relatively new class of nicotinic acetylcholine receptor (nAChR) competitive modulator (Insecticide Resistance Action Committee [IRAC] Group 4C) insecticides that provide control of a wide range of sap-feeding insect pests. The sulfoximine chemistry and sulfoxaflor exhibits distinct interactions with metabolic enzymes and nAChRs compared to other IRAC Group 4 insecticides such as the neonicotinoids (Group 4A). These distinctions translate to notable differences in the frequency and degree of cross-resistance between sulfoxaflor and other insecticides. Most insect strains exhibiting resistance to a variety of insecticides, including neonicotinoids, exhibited little to no cross-resistance to sulfoxaflor. To date, only two laboratory-based studies involving four strains (Koo et al. 2014, Chen et al. 2017) have observed substantial cross-resistance (>100 fold) to sulfoxaflor in neonicotinoid resistant insects. Where higher levels of cross-resistance to sulfoxaflor are observed the magnitude of that resistance is far less than that of the selecting neonicotinoid. Importantly, there is no correlation between presence of resistance to neonicotinoids (i.e., imidacloprid, acetamiprid) and cross-resistance to sulfoxaflor. This phenomenon is consistent with and can be attributed to the unique and differentiated chemical class represented by sulfoxalfor. Recent studies have demonstrated that high levels of resistance (resistance ratio = 124-366) to sulfoxaflor can be selected for in the laboratory which thus far appear to be associated with enhanced metabolism by specific cytochrome P450s, although other resistance mechanisms have not yet been excluded. One hypothesis is that sulfoxaflor selects for and is susceptible to a subset of P450s with different substrate specificity. A range of chemoinformatic, molecular modeling, metabolism and target-site studies have been published. These studies point to distinctions in the chemistry of sulfoxaflor, and its metabolism by enzymes associated with resistance to other insecticides, as well as its interaction with insect nicotinic acetylcholine receptors, further supporting the subgrouping of sulfoxaflor (Group 4C) separate from that of other Group 4 insecticides. Herein is an expansion of an earlier review (Sparks et al. 2013), providing an update that considers prior and current studies focused on the mode of action of sulfoxaflor, along with an analysis of the presently available resistance / cross-resistance studies, and implications and recommendations regarding resistance management.


Assuntos
Inseticidas , Receptores Nicotínicos , Resistência a Inseticidas , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Piridinas/toxicidade , Compostos de Enxofre
3.
Pestic Biochem Physiol ; 166: 104582, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448428

RESUMO

A key to effective insect pest management and insecticide resistance management is to provide growers with a range of new tools as potential alternatives to existing compounds or approaches. Sulfoxaflor (Isoclast™ active) is a new sulfoximine insecticide which is active on a broad range of sap-feeding insects, including species that have reduced susceptibility to currently used insecticides, such as imidacloprid from the neonicotinoid class. Sulfoxaflor (SFX) and imidacloprid (IMI) were tested in laboratory bioassays to compare the susceptibility of field populations of green peach aphid, Myzus persicae (Sulzer), exhibiting varying degrees of resistance involving an alteration (R81T) to the insect nicotinic acetylcholine receptor. The LC50 values for M. persicae exposed to SFX ranged from 0.09 to 1.31 (mg litre-1), whereas when the same populations were exposed to IMI the LC50 values ranged from 0.6 to 76.2 (mg litre-1). M. persicae were significantly more sensitive to SFX as compared to IMI for nine of the 13 populations tested. For M. persicae populations confirmed to be homozygous susceptible (ss) or heterozygous rs) for the R81T point mutation, there was no significant differences in the observed LC50 values for either SFX or IMI relative to the susceptible reference population (15LP1). However, in all M persicae populations that were homozygous (rr) for the R81T point mutation, susceptibility was significantly less to IMI as compared to the reference population with resistance ratios ranging from 22.1 to 63.5-fold. In contrast, only one homozygous resistant population (15MP9) exhibited a statistically significant change in susceptibility (RR = 10-fold) to SFX as compared to the reference population, which was far less than the 56-fold observed for imidacloprid in that same population. Thus, this study indicates there is no specific correlation between the laboratory efficacy of SFX and IMI in field collected populations in Spain displaying varying degrees of resistance to IMI. Furthermore, the presence of target site resistance in M. persicae to IMI, in the form of the R81T mutation, does not a priori translate to a reduction in sensitivity to sulfoxaflor. Consequently, SFX can be an effective tool for use in insect pest management programs for green peach aphid. These data also serve as a baseline reference for green peach aphid sensitivity to SFX prior to commercial uses in Spain.


Assuntos
Afídeos , Prunus persica , Receptores Nicotínicos , Animais , Mutação , Neonicotinoides , Nitrocompostos , Piridinas , Espanha , Compostos de Enxofre
4.
Cell Rep ; 28(6): 1612-1622.e4, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390573

RESUMO

Cachexia is a wasting syndrome characterized by pronounced skeletal muscle loss. In cancer, cachexia is associated with increased morbidity and mortality and decreased treatment tolerance. Although advances have been made in understanding the mechanisms of cachexia, translating these advances to the clinic has been challenging. One reason for this shortcoming may be the current animal models, which fail to fully recapitulate the etiology of human cancer-induced tissue wasting. Because pancreatic ductal adenocarcinoma (PDA) presents with a high incidence of cachexia, we engineered a mouse model of PDA that we named KPP. KPP mice, similar to PDA patients, progressively lose skeletal and adipose mass as a consequence of their tumors. In addition, KPP muscles exhibit a similar gene ontology as cachectic patients. We envision that the KPP model will be a useful resource for advancing our mechanistic understanding and ability to treat cancer cachexia.


Assuntos
Caquexia/etiologia , Modelos Animais de Doenças , Neoplasias Pancreáticas/complicações , Animais , Caquexia/genética , Caquexia/metabolismo , Progressão da Doença , Feminino , Ontologia Genética , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Transplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA-Seq , Transcriptoma , Neoplasias Pancreáticas
5.
Phys Med Rehabil Clin N Am ; 20(3): 577-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19643355

RESUMO

Rehabilitation management of children with cerebral palsy (CP) brings together parents and doctors. The primary goal of the contact is to improve the individual child's potential and to improve the child's functional outcomes. Frequently, parents are interested in not just their own child, but the population of children with cerebral palsy. Physicians can provide information for both purposes. Successful parent-professional relationships are rewarding and powerful. Combining the passion of the parent and the expertise of the physician can enhance collaboration for advocacy efforts that improve outcomes for children with cerebral palsy. An increasingly important component in the parent-medical collaboration is the identification of networks of local and national support for families of children with cerebral palsy. Fortunately, parents and organizations focused on children with cerebral palsy are seeing the necessity for collaboration to build community awareness, implement education programs, and spearhead pediatric cerebral palsy advocacy on a nationwide basis.


Assuntos
Pesquisa Biomédica/métodos , Paralisia Cerebral/psicologia , Pais/psicologia , Defesa do Paciente , Relações Profissional-Paciente/ética , Criança , Humanos
6.
J Neurosci ; 27(17): 4725-36, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17460085

RESUMO

The Rit GTPase is widely expressed in developing and adult nervous systems, and our previous data with pheochromocytoma cells implicate Rit signaling in NGF-induced neurite outgrowth. In this study, we investigated a role for Rit in neuronal morphogenesis. Expression of a dominant-negative (dn) Rit mutant in hippocampal neurons inhibited axonal growth but potentiated dendritic growth. Conversely, a constitutively active (ca) Rit mutant promoted axonal growth but inhibited dendritic growth. Dendritogenesis is regulated differently in sympathetic neurons versus hippocampal neurons in that sympathetic neurons require NGF and bone morphogenetic proteins (BMPs) to trigger dendritic growth. Despite these differences, dnRit potentiated and caRit blocked BMP7-induced dendritic growth in sympathetic neurons. Biochemical studies indicated that BMP7 treatments that caused dendritic growth also decreased Rit GTP loading. Additional studies demonstrate that caRit increased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and pharmacological inhibition of MEK1 (mitogen-activated protein kinase/ERK 1) blocked the axon-promoting and dendrite-inhibiting effects of caRit. These observations suggest that Rit is a convergence point for multiple signaling pathways and it functions to promote axonal growth but inhibit dendritic growth via activation of ERK1/2. Modulation of the activational status of Rit may therefore represent a generalized mechanism across divergent neuronal cell types for regulating axonal versus dendritic growth modes.


Assuntos
Axônios/enzimologia , Dendritos/enzimologia , Neurônios/enzimologia , Proteínas ras/metabolismo , Animais , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/farmacologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Dendritos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Neurônios/ultraestrutura , Células PC12 , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/citologia , Transfecção , Fator de Crescimento Transformador beta/farmacologia , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...