Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255786

RESUMO

Polymer-based membranes represent an irreplaceable group of materials that can be applied in a wide range of key industrial areas, from packaging to high-end technologies. Increased selectivity to transport properties or the possibility of controlling membrane permeability by external stimuli represents a key issue in current material research. In this work, we present an unconventional approach with the introduction of silver nanoparticles (AgNPs) into membrane pores, by immobilising them onto the surface of polyethyleneterephthalate (PET) foil with subsequent physical modification by means of laser and plasma radiation prior to membrane preparation. Our results showed that the surface characteristics of AgNP-decorated PET (surface morphology, AgNP content, and depth profile) affected the distribution and concentration of AgNPs in subsequent ion-track membranes. We believe that the presented approach affecting the redistribution of AgNPs in the polymer volume may open up new possibilities for the preparation of metal nanoparticle-filled polymeric membranes. The presence of AgNPs on the pore walls can facilitate the grafting of stimuli-responsive molecules onto these active sites and may contribute to the development of intelligent membranes with controllable transport properties.


Assuntos
Nanopartículas Metálicas , Poro Nuclear , Prata , Polímeros , Tomografia por Emissão de Pósitrons
2.
Nanomaterials (Basel) ; 13(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132977

RESUMO

In the case of polymer medical devices, the surface design plays a crucial role in the contact with human tissue. The use of AgNPs as antibacterial agents is well known; however, there is still more to be investigated about their anchoring into the polymer surface. This study describes the changes in the surface morphology and behaviour in the biological environment of polyetheretherketone (PEEK) with immobilised AgNPs after different surface modifications. The initial composites were prepared by immobilising silver nanoparticles from a colloid solution in the upper surface layers of polyetheretherketone (PEEK). The prepared samples (Ag/PEEK) had a planar morphology and were further modified with a KrF laser, a GaN laser, and an Ar plasma. The samples were studied using the AFM method to visualise changes in surface morphology and obtain information on the height of the structures and other surface parameters. A comparative analysis of the nanoparticles and polymers was performed using FEG-SEM. The chemical composition of the surface of the samples and optical activity were studied using XPS and UV-Vis spectroscopy. Finally, drop plate antibacterial and cytotoxicity tests were performed to determine the role of Ag nanoparticles after modification and suitability of the surface, which are important for the use of the resulting composite in biomedical applications.

3.
AoB Plants ; 15(2): plad004, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36970187

RESUMO

The technological exploitation of palladium or palladium nanoparticles (PdNPs) is increasing, and their wider usage relates to an unwanted release of pollutants into the environment, raising public health concerns about the infiltration of palladium into the consumption chain. This study focuses on the effect of spherical gold-cored PdNPs of 50 ± 10 nm diameter stabilized by sodium citrate on the interaction between an oilseed rape (Brassica napus) and the fungal pathogen Plenodomus lingam. Pretreatment of B. napus cotyledons with PdNPs suspension 24 h before but not 24 h after inoculation with P. lingam resulted in a decrease in the extent of disease symptoms; however, this effect was caused by Pd2+ ions (35 mg l-1 or 70 mg l-1). Tests to determine any direct antifungal activity on P. lingam in vitro demonstrated that the residual Pd2+ ions present in the PdNP suspension were responsible for the antifungal activity and that PdNPs themselves do not contribute to this effect. Brassica napus plants did not show any symptoms of palladium toxicity in any form. PdNPs/Pd2+ slightly increased the chlorophyll content and the transcription of pathogenesis-related gene 1 (PR1), indicating the activation of the plant defence system. We conclude that the only toxic effect of the PdNP suspension was on P. lingam via ions and that PdNPs/Pd2+ did not have any deleterious effect on the B. napus plants.

4.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674946

RESUMO

Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Polietilenoglicóis/química , Cetonas/química , Antibacterianos/farmacologia , Antibacterianos/química
5.
Materials (Basel) ; 15(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36556756

RESUMO

Today, ultramicrotome cutting is a practical tool, which is frequently applied in the preparation of thin polymeric films. One of the advantages of such a technique is the decrease in surface roughness, which enables an effective recording of further morphological changes of polymeric surfaces during their processing. In view of this, we report on ultramicrotome-cut polymers (PET, PEEK) modified by a KrF excimer laser with simultaneous decoration by AgNPs. The samples were immersed into AgNP colloid, in which they were exposed to polarized laser light. As a result, both polymers changed their surface morphology while simultaneously being decorated with AgNPs. KrF laser irradiation of the samples resulted in the formation of ripple-like structures on the surface of PET and worm-like ones in the case of PEEK. Both polymers were homogeneously covered by AgNPs. The selected area of the samples was then irradiated by a violet semiconductor laser from the confocal laser scanning microscope with direct control of the irradiated area. Various techniques, such as AFM, FEGSEM, and CLSM were used to visualize the irradiated area. After irradiation, the reverse pyramid was formed for both types of polymers. PET samples exhibited thicker transparent reverse pyramids, whereas PEEK samples showed thinner brownish ones. We believe that his technique can be effectively used for direct polymer writing or the preparation of stimuli-responsive nanoporous membranes.

6.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433071

RESUMO

In this article, we present a unique combination of techniques focusing on the immobilization of noble metal nanoparticles into a honeycomb polystyrene pattern prepared with the improved phase-separation technique. The procedure consists of two main steps: the preparation of the honeycomb pattern (HCP) on a perfluoroethylenepropylene substrate (FEP), followed by an immobilization procedure realized by the honeycomb pattern's exposure to an excimer laser in a noble metal nanoparticle solution. The surface physico-chemical properties, mainly the surface morphology and chemistry, are characterized in detail in the study. The two-step procedure represents the unique architecture of the surface immobilization process, which reveals a wide range of potential applications, mainly in tissue engineering, but also as substrates for analytical use.

7.
Membranes (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363615

RESUMO

This work is devoted to the study of controlled preparation and filling of pores in polyethylene terephthalate (PET) membranes. A standard wet chemical etching with different protocols (isothermal and isochronous etching for different times and temperatures and etching from one or both sides of the films) was used to prepare the micrometric pores. The pores were filled with either a LiCl solution or boron deposited by magnetron sputtering. Subsequent control of the pore shape and dopant filling was performed using the nuclear methods of ion transmission spectroscopy (ITS) and neutron depth profiling (NDP). It turned out that wet chemical etching, monitored and quantified by ITS, was shown to enable the preparation of the desired simple pore geometry. Furthermore, the effect of dopant filling on the pore shape could be well observed and analyzed by ITS and, for relevant light elements, by NDP, which can determine their depth (and spatial) distribution. In addition, both non-destructive methods were proven to be suitable and effective tools for studying the preparation and filling of pores in thin films. Thus, they can be considered promising for research into nanostructure technologies of thin porous membranes.

8.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234493

RESUMO

Design and properties of a plasmonic modulator in situ tunable by electric field are presented. Our design comprises the creation of periodic surface pattern on the surface of an elastic polymer supported by a piezo-substrate by excimer laser irradiation and subsequent selective coverage by silver by tilted angle vacuum evaporation. The structure creation was confirmed by AFM and FIB-SEM techniques. An external electric field is used for fine control of the polymer pattern amplitude, which tends to decrease with increasing voltage. As a result, surface plasmon-polariton excitation is quenched, leading to the less pronounced structure of plasmon response. This quenching was checked using UV-Vis spectroscopy and SERS measurements, and confirmed by numerical simulation. All methods prove the proposed functionality of the structures enabling the creation smart plasmonic materials for a very broad range of advanced optical applications.

9.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142868

RESUMO

Although many noble metals are known for their antibacterial properties against the most common pathogens, such as Escherichia coli and Staphylococcus epidermidis, their effect on healthy cells can be toxic. For this reason, the choice of metals that preserve the antibacterial effect while being biocompatible with health cells is very important. This work aims to validate the effect of gold on the biocompatibility of Au/Ag nanowires, as assessed in our previous study. Polyethylene naphthalate (PEN) was treated with a KrF excimer laser to provide specific laser-induced periodic structures. Then, Au was deposited onto the modified PEN via a vacuum evaporation method. Atomic force microscopy and scanning electron microscopy revealed the dependence of the surface morphology on the incidence angle of the laser beam. A resazurin assay cytotoxicity test confirmed safety against healthy human cells and even cell proliferation was observed after 72 h of incubation. We have obtained satisfactory results, demonstrating that monometallic Au nanowires can be applied in biomedical applications and provide the biocompatibility of bimetallic Au/AgNWs.


Assuntos
Nanofios , Antibacterianos/farmacologia , Escherichia coli , Ouro/química , Ouro/farmacologia , Humanos , Lasers , Nanofios/química , Naftalenos , Polietilenos
10.
Nanomaterials (Basel) ; 12(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35407337

RESUMO

As polymeric materials are already used in many industries, the range of their applications is constantly expanding. Therefore, their preparation procedures and the resulting properties require considerable attention. In this work, we designed the surface of polyethylene naphthalate (PEN) introducing copper nanowires. The surface of PEN was transformed into coherent ripple patterns by treatment with a KrF excimer laser. Then, Cu deposition onto nanostructured surfaces by a vacuum evaporation technique was accomplished, giving rise to nanowires. The morphology of the prepared structures was investigated by atomic force microscopy and scanning electron microscopy. Energy dispersive spectroscopy and X-ray photoelectron spectroscopy revealed the distribution of Cu in the nanowires and their gradual oxidation. The optical properties of the Cu nanowires were measured by UV-Vis spectroscopy. The sessile drop method revealed the hydrophobic character of the Cu/PEN surface, which is important for further studies of biological responses. Our study suggests that a combination of laser surface texturing and vacuum evaporation can be an effective and simple method for the preparation of a Cu/polymer nanocomposite with potential exploitation in bioapplications; however, it should be borne in mind that significant post-deposition oxidation of the Cu nanowire occurs, which may open up new strategies for further biological applications.

11.
Nanomaterials (Basel) ; 12(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269281

RESUMO

In the last two decades, the importance of nanomaterials in modern technologies has been unquestionable. Metal nanoparticles are frequently used in many areas of science and technology, delivering unprecedented improvements to properties of the conventional materials. This work introduces an effective tool for preparing a highly enriched poly (ethylene terephthalate) (PET) surface with silver nanoparticles, firmly immobilized in the same surface area on polymer. We showed that besides pristine polymer, this approach may be successfully applied also on laser pre-treated PET with laser-induced periodic surface structures. At the same time, its final nanostructure may be effectively controlled by laser fluence applied during the immobilization process.

12.
Biotechnol Adv ; 58: 107929, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35189273

RESUMO

Within the past decades, nanoparticles (NPs) have become common components of electronics, batteries, cosmetics, clothing, and even dietary supplements. Despite their undisputed advantages consisting in the possibility of engineering their novel physical, thermal, optical, and biological properties, safety questions arise concerning their wide exploitation. NPs interact with living organisms, which can interfere with essential life processes. The aim of this paper is to critically review the current literature dealing with noble metals' NPs (NM-NPs) and their effects on plants and associated microorganisms. Particular attention has been given to the less studied NPs of platinum group elements, which can be considered a neglected pollutant, since they are released from vehicles' catalysts. In addition, we have provided a comprehensive overview of the biotechnology exploitation of NM-NPs in plant cultivation, where prospective nanomaterials developed as nanofertilizers and nanopesticides are introduced, and both the pros and the cons of nanomaterial plant treatments have been discussed.


Assuntos
Nanopartículas Metálicas , Agricultura , Biotecnologia , Plantas , Estudos Prospectivos
13.
Plants (Basel) ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161294

RESUMO

The superior properties of silver nanoparticles (AgNPs) has resulted in their broad utilization worldwide, but also the risk of irreversible environment infestation. The plant cuticle and cell wall can trap a large part of the nanoparticles and thus protect the internal cell structures, where the cytoskeleton, for example, reacts very quickly to the threat, and defense signaling is subsequently triggered. We therefore used not only wild-type Arabidopsis seedlings, but also the glabra 1 mutant, which has a different composition of the cuticle. Both lines had GFP-labeled microtubules (MTs), allowing us to observe their arrangement. To quantify MT dynamics, we developed a new microscopic method based on the FRAP technique. The number and growth rate of MTs decreased significantly after AgNPs, similarly in both lines. However, the layer above the plasma membrane thickened significantly in wild-type plants. The levels of three major stress phytohormone derivatives-jasmonic, abscisic, and salicylic acids-after AgNP (with concomitant Ag+) treatment increased significantly (particularly in mutant plants) and to some extent resembled the plant response after mechanical stress. The profile of phytohormones helped us to estimate the mechanism of response to AgNPs and also to understand the broader physiological context of the observed changes in MT structure and dynamics.

14.
Nanomaterials (Basel) ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578601

RESUMO

As inflammation frequently occurs after the implantation of a medical device, biocompatible, antibacterial materials must be used. Polymer-metal nanocomposites are promising materials. Here we prepared enhanced polyethylene naphthalate (PEN) using surface modification techniques and investigated its suitability for biomedical applications. The PEN was modified by a KrF laser forming periodic ripple patterns with specific surface characteristics. Next, Au/Ag nanowires were deposited onto the patterned PEN using vacuum evaporation. Atomic force microscopy confirmed that the surface morphology of the modified PEN changed accordingly with the incidence angle of the laser beam. Energy-dispersive X-ray spectroscopy showed that the distribution of the selected metals was dependent on the evaporation technique. Our bimetallic nanowires appear to be promising antibacterial agents due to the presence of antibacterial noble metals. The antibacterial effect of the prepared Au/Ag nanowires against E. coli and S. epidermidis was demonstrated using 24 h incubation with a drop plate test. Moreover, a WST-1 cytotoxicity test that was performed to determine the toxicity of the nanowires showed that the materials could be considered non-toxic. Collectively, these results suggest that prepared Au/Ag nanostructures are effective, biocompatible surface coatings for use in medical devices.

15.
Materials (Basel) ; 14(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204802

RESUMO

We report on a novel technique of surface texturing of polyethylene terephthalate (PET) foil in the presence of silver nanoparticles (AgNPs). This approach provides a variable surface morphology of PET evenly decorated with AgNPs. Surface texturing occurred in silver nanoparticle colloids of different concentrations under the action of pulse excimer laser. Surface morphology of PET immobilized with AgNPs was observed by AFM and FEGSEM. Atomic concentration of silver was determined by XPS. A presented concentration-controlled procedure of surface texturing of PET in the presence of silver colloids leads to a highly nanoparticle-enriched polymer surface with a variable morphology and uniform nanoparticle distribution.

16.
Plants (Basel) ; 10(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205810

RESUMO

Tobacco seedlings (Nicotiana tabacum L cv. Wisconsin 38) were treated for 24 h with colloidal solution of silver and gold nanoparticles (AgNPs and AuNPs) of different size or cultivated for 8 weeks on soil polluted with these NPs. DNA damage in leaf and roots nuclei was evaluated by the comet assay. AgNPs of the size 22-25 nm at concentrations higher than 50 mg·L-1 significantly increased the tail moments (TM) values in leaf nuclei compared to the negative control. Ag nanoparticles of smaller size 12-15 nm caused a slight increase in tail moment without significant difference from the negative control. The opposite effect of AgNPs was observed on roots. The increasing tail moment was registered for smaller NPs. Similar results were observed for AuNPs at a concentration of 100 mg·L-1. DNA damaging effects after growing tobacco plants for 8 weeks in soil polluted with AgNPs and AuNPs of different size and concentrations were observed. While lower concentrations of both types of particles had no effect on the integrity of DNA, concentration of 30 mg·kg-1 of AgNPs caused significant DNA damage in leaves of tobacco plants. AuNPs had no effect even at the highest concentration. The content of Ag was determined by ICP-MS in above-ground part of plants (leaves) after 8 weeks of growth in soil with 30 mg·kg-1. AgNPs and was 2.720 ± 0.408 µg·g-1. Long term effect is much less harmful probably due to the plant restoration capability.

17.
Materials (Basel) ; 14(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300969

RESUMO

This study involved the preparation and characterization of structures with a honeycomb-like pattern (HCP) formed using the phase separation method using a solution mixture of chloroform and methanol together with cellulose acetate. Fluorinated ethylene propylene modified by plasma treatment was used as a suitable substrate for the formation of the HCP structures. Further, we modified the HCP structures using silver sputtering (discontinuous Ag nanoparticles) or by adding Ag nanoparticles in PEG into the cellulose acetate solution. The material morphology was then determined using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while the material surface chemistry was studied using energy dispersive spectroscopy (EDS) and wettability was analyzed with goniometry. The AFM and SEM results revealed that the surface morphology of pristine HCP with hexagonal pores changed after additional sample modification with Ag, both via the addition of nanoparticles and sputtering, accompanied with an increase in the roughness of the PEG-doped samples, which was caused by the high molecular weight of PEG and its gel-like structure. The highest amount (approx. 25 at %) of fluorine was detected using the EDS method on the sample with an HCP-like structure, while the lowest amount (0.08%) was measured on the PEG + Ag sample, which revealed the covering of the substrate with biopolymer (the greater fluorine extent means more of the fluorinated substrate is exposed). As expected, the thickness of the Ag layer on the HCP surface depended on the length of sputtering (either 150 s or 500 s). The sputtering times for Ag (150 s and 500 s) corresponded to layers with heights of about 8 nm (3.9 at % of Ag) and 22 nm (10.8 at % of Ag), respectively. In addition, we evaluated the antibacterial potential of the prepared substrate using two bacterial strains, one Gram-positive of S. epidermidis and one Gram-negative of E. coli. The most effective method for the construction of antibacterial surfaces was determined to be sputtering (150 s) of a silver nanolayer onto a HCP-like cellulose structure, which proved to have excellent antibacterial properties against both G+ and G- bacterial strains.

18.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071711

RESUMO

The subjects of this work were the enhancement and determination of the stability and other properties of gold nanoparticles (AuNPs) in an aqueous solution, gold nanoparticle immobilization, and further surface grafting on polyethylene naphthalate (PEN). Gold nanoparticles in PEG with a subsequent water solution addition were prepared using cathode sputtering; for the subsequent surface activation, two different solutions were used: (i) sodium citrate dihydrate (TCD) and (ii) N-acetyl-L-cysteine (NALC). The aim of this work was to study the effect of the concentration of these solutions on AuNPs stability, and further, the effect of the concentration of gold nanoparticles and their morphology, and to describe the aging process of solutions, namely, the optical properties of samples over 28 days. Stabilized AuNPs were prepared in an N-acetyl-L-cysteine (NALC) system and subsequently immobilized with NALC. The surface chemistry modification of AuNPs was confirmed using HRTEM/EDS. Gold nanoparticles were successfully immobilized with NALC. Grafting of the modified PEN from a solution of colloidal gold stabilized in the PEG-H2O-NALC system led to the polymer surface functionalization.

19.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260477

RESUMO

This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)-and when forming the composites with organic matrices-are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.


Assuntos
Nanoestruturas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos , Medicina Regenerativa/métodos
20.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396769

RESUMO

The properties of materials at the nanoscale open up new methodologies for engineering prospective materials usable in high-end applications. The preparation of composite materials with a high content of an active component on their surface is one of the current challenges of materials engineering. This concept significantly increases the efficiency of heterogeneous processes moderated by the active component, typically in biological applications, catalysis, or drug delivery. Here we introduce a general approach, based on laser-induced optomechanical processing of silver colloids, for the preparation of polymer surfaces highly enriched with silver nanoparticles (AgNPs). As a result, the AgNPs are firmly immobilized in a thin surface layer without the use of any other chemical mediators. We have shown that our approach is applicable to a broad spectrum of polymer foils, regardless of whether they absorb laser light or not. However, if the laser radiation is absorbed, it is possible to transform smooth surface morphology of the polymer into a roughened one with a higher specific surface area. Analyses of the release of silver from the polymer surface together with antibacterial tests suggested that these materials could be suitable candidates in the fight against nosocomial infections and could inhibit the formation of biofilms with a long-term effect.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Eletroquímica , Luz , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Teóricos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...