Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cardiovasc Res ; 1(5): 476-490, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35602406

RESUMO

Stem and progenitor cells residing in the intestinal crypts drive the majority of colorectal cancers (CRCs), yet vascular contribution to this niche remains largely unexplored. VEGFA is a key driver of physiological and tumor angiogenesis. Accordingly, current anti-angiogenic cancer therapies target the VEGFA pathway. Here we report that in CRC expansion of the stem/progenitor pool in intestinal crypts requires VEGFA-independent growth and remodeling of blood vessels. Epithelial transformation induced expression of the endothelial peptide apelin, directs migration of distant venous endothelial cells towards progenitor niche vessels ensuring optimal perfusion. In the absence of apelin, loss of injury-inducible PROX1+ epithelial progenitors inhibited both incipient and advanced intestinal tumor growth. Our results establish fundamental principles for the reciprocal communication between vasculature and the intestinal progenitor niche and provide a mechanism for resistance to VEGFA-targeting drugs in CRCs.

2.
Proc Natl Acad Sci U S A ; 117(35): 21381-21390, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839303

RESUMO

Stored red blood cells (RBCs) are needed for life-saving blood transfusions, but they undergo continuous degradation. RBC storage lesions are often assessed by microscopic examination or biochemical and biophysical assays, which are complex, time-consuming, and destructive to fragile cells. Here we demonstrate the use of label-free imaging flow cytometry and deep learning to characterize RBC lesions. Using brightfield images, a trained neural network achieved 76.7% agreement with experts in classifying seven clinically relevant RBC morphologies associated with storage lesions, comparable to 82.5% agreement between different experts. Given that human observation and classification may not optimally discern RBC quality, we went further and eliminated subjective human annotation in the training step by training a weakly supervised neural network using only storage duration times. The feature space extracted by this network revealed a chronological progression of morphological changes that better predicted blood quality, as measured by physiological hemolytic assay readouts, than the conventional expert-assessed morphology classification system. With further training and clinical testing across multiple sites, protocols, and instruments, deep learning and label-free imaging flow cytometry might be used to routinely and objectively assess RBC storage lesions. This would automate a complex protocol, minimize laboratory sample handling and preparation, and reduce the impact of procedural errors and discrepancies between facilities and blood donors. The chronology-based machine-learning approach may also improve upon humans' assessment of morphological changes in other biomedically important progressions, such as differentiation and metastasis.


Assuntos
Bancos de Sangue , Aprendizado Profundo , Eritrócitos/citologia , Humanos
3.
Sci Rep ; 9(1): 17488, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767900

RESUMO

Fluorine-19 (19F) magnetic resonance imaging (MRI) of injected perfluorocarbons (PFCs) can be used for the quantification and monitoring of inflammation in diseases such as atherosclerosis. To advance the translation of this technique to the clinical setting, we aimed to 1) demonstrate the feasibility of quantitative 19F MRI in small inflammation foci on a clinical scanner, and 2) to characterize the PFC-incorporating leukocyte populations and plaques. To this end, thirteen atherosclerotic apolipoprotein-E-knockout mice received 2 × 200 µL PFC, and were scanned on a 3 T clinical MR system. 19F MR signal was detected in the aortic arch and its branches in all mice, with a signal-to-noise ratio of 11.1 (interquartile range IQR = 9.5-13.1) and a PFC concentration of 1.15 mM (IQR = 0.79-1.28). Imaging flow cytometry was used on another ten animals and indicated that PFC-labeled leukocytes in the aortic arch and it branches were mainly dendritic cells, macrophages and neutrophils (ratio 9:1:1). Finally, immunohistochemistry analysis confirmed the presence of those cells in the plaques. We thus successfully used 19F MRI for the noninvasive quantification of PFC in atherosclerotic plaque in mice on a clinical scanner, demonstrating the feasibility of detecting very small inflammation foci at 3 T, and advancing the translation of 19F MRI to the human setting.


Assuntos
Células Dendríticas/metabolismo , Imagem por Ressonância Magnética de Flúor-19/instrumentação , Macrófagos/metabolismo , Neutrófilos/metabolismo , Placa Aterosclerótica/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/genética , Placa Aterosclerótica/imunologia , Razão Sinal-Ruído
4.
Cell Rep ; 22(8): 2107-2117, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466737

RESUMO

The formation of central CD8 T cell memory in response to infection depends on the transcription factor Tcf1 (Tcf7). Tcf1 is expressed at high levels in naive CD8 T cells but downregulated in most CD8 T cells during effector differentiation. The relevance of Tcf1 downregulation for effector differentiation and the signals controlling Tcf1 expression have not been elucidated. Here, we show that systemic inflammatory signals downregulated Tcf1 in CD8 T cells during dendritic cell vaccination and bacterial infections. The suppressive effect was mediated by the inflammatory cytokine interleukin 12 (IL-12), which acted via STAT4 in CD8 T cells. IL-12-induced Tcf1 downregulation required cell cycling, occurred at the transcriptional level, and was prevented in part by inhibiting DNA methyltransferases. Absence of Tcf1 during T cell priming circumvented the need of systemic inflammation for effector differentiation. We conclude that silencing of Tcf1 by systemic inflammation facilitates effector CD8 T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Animais , Ciclo Celular , Divisão Celular , Apresentação Cruzada/imunologia , Regulação para Baixo/genética , Regulação da Expressão Gênica , Memória Imunológica , Inflamação/patologia , Interleucina-12/metabolismo , Subunidade beta 2 de Receptor de Interleucina-12/metabolismo , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT4/metabolismo , Transdução de Sinais , Vacinação
5.
Sci Rep ; 6: 39117, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974744

RESUMO

Th17 cells play critical roles in host defense and autoimmunity. Emerging data support a role for Notch signaling in Th17 cell differentiation but whether it is a positive or negative regulator remains unclear. We report here that T cell-specific deletion of Notch receptors enhances Th17 cell differentiation in the gut, with a corresponding increase in IL-17 secretion. An increase in Th17 cell frequency was similarly observed following immunization of T cell specific Notch mutant mice with OVA/CFA. However, in this setting, Th17 cytokine secretion was impaired, and increased intracellular retention of IL-17 was observed. Intracellular IL-17 co-localized with the CD71 iron transporter in the draining lymph node of both control and Notch-deficient Th17 cells. Immunization induced CD71 surface expression in control, but not in Notch-deficient Th17 cells, revealing defective CD71 intracellular transport in absence of Notch signaling. Moreover, Notch receptor deficient Th17 cells had impaired mTORC2 activity. These data reveal a context-dependent impact of Notch on vesicular transport during high metabolic demand suggesting a role for Notch signaling in the bridging of T cell metabolic demands and effector functions. Collectively, our findings indicate a prominent regulatory role for Notch signaling in the fine-tuning of Th17 cell differentiation and effector function.


Assuntos
Imunização/métodos , Interleucina-17/metabolismo , Receptores Notch/metabolismo , Células Th17/citologia , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Células Cultivadas , Camundongos , Transporte Proteico , Receptores da Transferrina/metabolismo , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 113(32): E4671-80, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462105

RESUMO

Inflammasomes are critical sensors that convey cellular stress and pathogen presence to the immune system by activating inflammatory caspases and cytokines such as IL-1ß. The nature of endogenous stress signals that activate inflammasomes remains unclear. Here we show that an inhibitor of the HIV aspartyl protease, Nelfinavir, triggers inflammasome formation and elicits an IL-1R-dependent inflammation in mice. We found that Nelfinavir impaired the maturation of lamin A, a structural component of the nuclear envelope, thereby promoting the release of DNA in the cytosol. Moreover, deficiency of the cytosolic DNA-sensor AIM2 impaired Nelfinavir-mediated inflammasome activation. These findings identify a pharmacologic activator of inflammasome and demonstrate the role of AIM2 in detecting endogenous DNA release upon perturbation of nuclear envelope integrity.


Assuntos
Inflamassomos/efeitos dos fármacos , Nelfinavir/farmacologia , Membrana Nuclear/efeitos dos fármacos , Animais , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Caspase 1/metabolismo , DNA/metabolismo , Inflamassomos/fisiologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Membrana Nuclear/fisiologia , Receptores de Interleucina-1/fisiologia
7.
Nat Commun ; 7: 12134, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27396388

RESUMO

The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases.


Assuntos
Linfócitos B Reguladores/fisiologia , Transplante de Medula Óssea , Encefalomielite Autoimune Experimental/terapia , Células Precursoras de Linfócitos B/transplante , Animais , Linfócitos B Reguladores/citologia , Diferenciação Celular , Movimento Celular , Quimiocina CCL19/fisiologia , Feminino , Interferon gama/metabolismo , Interleucina-10/metabolismo , Linfonodos/fisiologia , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos , Células Precursoras de Linfócitos B/fisiologia
8.
J Immunol ; 196(7): 2939-46, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944927

RESUMO

NLRC5, a member of the NOD-like receptor (NLR) protein family, has recently been characterized as the master transcriptional regulator of MHCI molecules in lymphocytes, in which it is highly expressed. However, its role in activated dendritic cells (DCs), which are instrumental to initiate T cell responses, remained elusive. We show in this study that, following stimulation of DCs with inflammatory stimuli, not only did NLRC5 level increase, but also its importance in directing MHCI transcription. Despite markedly reduced mRNA and intracellular H2-K levels, we unexpectedly observed nearly normal H2-K surface display in Nlrc5(-/-) DCs. Importantly, this discrepancy between a strong intracellular and a mild surface defect in H2-K levels was observed also in DCs with H2-K transcription defects independent of Nlrc5. Hence, alongside with demonstrating the importance of NLRC5 in MHCI transcription in activated DCs, we uncover a general mechanism counteracting low MHCI surface expression. In agreement with the decreased amount of neosynthesized MHCI, Nlrc5(-/-) DCs exhibited a defective capacity to display endogenous Ags. However, neither T cell priming by endogenous Ags nor cross-priming ability was substantially affected in activated Nlrc5(-/-) DCs. Altogether, these data show that Nlrc5 deficiency, despite significantly affecting MHCI transcription and Ag display, is not sufficient to hinder T cell activation, underlining the robustness of the T cell priming process by activated DCs.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Apresentação Cruzada/imunologia , Regulação da Expressão Gênica , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Linfócitos T/metabolismo , Transcrição Gênica
9.
J Clin Invest ; 125(12): 4572-86, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26529256

RESUMO

The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature.


Assuntos
Gorduras na Dieta/metabolismo , Intestino Delgado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfangiogênese , Vasos Linfáticos/fisiologia , Proteínas de Membrana/metabolismo , Regeneração , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Gorduras na Dieta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Receptores Notch/genética , Receptores Notch/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Circulation ; 127(23): 2285-94, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23671208

RESUMO

BACKGROUND: Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and complete Freund's adjuvant. Together with interferon-γ, heat-killed Mycobacterium tuberculosis, an essential component of complete Freund's adjuvant, converted CD11b(hi)CD11c(-) monocytes into tumor necrosis factor-α- and nitric oxide synthase 2-producing dendritic cells (TipDCs). Heat-killed M. tuberculosis stimulated production of nitric oxide synthase 2 via Toll-like receptor 2-mediated nuclear factor-κB activation. TipDCs limited antigen-specific T-cell expansion through nitric oxide synthase 2-dependent nitric oxide production. Moreover, they promoted nitric oxide synthase 2 production in hematopoietic and stromal cells in a paracrine manner. Consequently, nitric oxide synthase 2 production by both radiosensitive hematopoietic and radioresistant stromal cells prevented exacerbation of autoimmune myocarditis in vivo. CONCLUSIONS: Innate Toll-like receptor 2 stimulation promotes formation of regulatory TipDCs, which confine autoreactive T-cell responses in experimental autoimmune myocarditis via nitric oxide. Therefore, activation of innate pattern-recognition receptors is critical not only for disease induction but also for counterregulatory mechanisms, protecting the heart from exaggerated autoimmunity.


Assuntos
Doenças Autoimunes/fisiopatologia , Células Dendríticas/metabolismo , Tolerância Imunológica/fisiologia , Interferon gama/fisiologia , Miocardite/fisiopatologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico/biossíntese , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/patologia , Receptor 2 Toll-Like/fisiologia , Animais , Doenças Autoimunes/imunologia , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/imunologia , Indução Enzimática/efeitos dos fármacos , Células-Tronco Hematopoéticas/enzimologia , Células-Tronco Hematopoéticas/efeitos da radiação , Tolerância Imunológica/imunologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Miocardite/imunologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Comunicação Parácrina , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Quimera por Radiação , Tolerância a Radiação , Células Estromais/enzimologia , Células Estromais/efeitos da radiação , Linfócitos T Auxiliares-Indutores/imunologia , Miosinas Ventriculares/imunologia , Miosinas Ventriculares/toxicidade
11.
Front Immunol ; 3: 285, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973278

RESUMO

Fibroblastic reticular cells (FRC) form the structural backbone of the T cell rich zones in secondary lymphoid organs (SLO), but also actively influence the adaptive immune response. They provide a guidance path for immigrating T lymphocytes and dendritic cells (DC) and are the main local source of the cytokines CCL19, CCL21, and IL-7, all of which are thought to positively regulate T cell homeostasis and T cell interactions with DC. Recently, FRC in lymph nodes (LN) were also described to negatively regulate T cell responses in two distinct ways. During homeostasis they express and present a range of peripheral tissue antigens, thereby participating in peripheral tolerance induction of self-reactive CD8(+) T cells. During acute inflammation T cells responding to foreign antigens presented on DC very quickly release pro-inflammatory cytokines such as interferon γ. These cytokines are sensed by FRC which transiently produce nitric oxide (NO) gas dampening the proliferation of neighboring T cells in a non-cognate fashion. In summary, we propose a model in which FRC engage in a bidirectional crosstalk with both DC and T cells to increase the efficiency of the T cell response. However, during an acute response, FRC limit excessive expansion and inflammatory activity of antigen-specific T cells. This negative feedback loop may help to maintain tissue integrity and function during rapid organ growth.

12.
PLoS One ; 6(11): e27618, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110693

RESUMO

Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.


Assuntos
Fibroblastos/citologia , Fibroblastos/metabolismo , Linfonodos/citologia , Óxido Nítrico/biossíntese , Linfócitos T/citologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Dendríticas/citologia , Células Dendríticas/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Interferon gama/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/deficiência , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
Immunol Lett ; 138(1): 9-11, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21333683

RESUMO

It is within the T cell rich zone of secondary lymphoid organs (SLO) that dendritic cells (DC) present the captured pathogens to recirculating T cells in order to activate the rare antigen-specific T cells. While we have made considerable progress in understanding the biology of mobile hematopoietic cells found within SLO, notably DC and lymphocytes, we still have a lot to learn about the sessile stromal cells. This review is focused on the recent progress made in our understanding of the fibroblastic reticular stromal cells that form the 'niches' within the T zone.


Assuntos
Células do Tecido Conjuntivo/imunologia , Células Dendríticas/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa/imunologia , Animais , Humanos , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Células Estromais/imunologia
14.
J Immunol ; 183(7): 4273-83, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19734211

RESUMO

In the paracortex of the lymph node (LN), T zone fibroblastic reticular cells (TRCs) orchestrate an immune response by guiding lymphocyte migration both physically, by creating three-dimensional (3D) cell networks, and chemically, by secreting the chemokines CCL19 and CCL21 that direct interactions between CCR7-expressing cells, including mature dendritic cells and naive T cells. TRCs also enwrap matrix-based conduits that transport fluid from the subcapsular sinus to high endothelial venules, and fluid flow through the draining LN rapidly increases upon tissue injury or inflammation. To determine whether fluid flow affects TRC organization or function within a 3D network, we regenerated the 3D LN T zone stromal network by culturing murine TRC clones within a macroporous polyurethane scaffold containing type I collagen and Matrigel and applying slow interstitial flow (1-23 microm/min). We show that the 3D environment and slow interstitial flow are important regulators of TRC morphology, organization, and CCL21 secretion. Without flow, CCL21 expression could not be detected. Furthermore, when flow through the LN was blocked in mice in vivo, CCL21 gene expression was down-regulated within 2 h. These results highlight the importance of lymph flow as a homeostatic regulator of constitutive TRC activity and introduce the concept that increased lymph flow may act as an early inflammatory cue to enhance CCL21 expression by TRCs, thereby ensuring efficient immune cell trafficking, lymph sampling, and immune response induction.


Assuntos
Quimiocina CCL21/biossíntese , Linfonodos/citologia , Linfonodos/imunologia , Linfa/imunologia , Engenharia Tecidual , Animais , Diferenciação Celular/imunologia , Quimiocina CCL21/genética , Células Clonais , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Imunidade Inata , Imunofenotipagem , Linfa/citologia , Linfa/metabolismo , Linfonodos/metabolismo , Camundongos , Camundongos Knockout , Modelos Imunológicos , Técnicas de Cultura de Órgãos , Células Estromais/citologia , Células Estromais/imunologia , Células Estromais/metabolismo , Engenharia Tecidual/métodos , Transdução Genética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...