Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Radiol Prot ; 43(4)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37797608

RESUMO

A method has been developed for solving the Fredholm equation in the barrier geometry for reconstructing the surface activity density (SAD) from the results of measuring the ambient dose equivalent rate (ADER). Inclusion of the barrier geometry means that the method takes into account the shielding effect of buildings and structures on the contaminated site. The method was based on the representation of the industrial site, buildings and radiation fields in the form of a raster and the use of the visibility matrix (VM) of raster cells to describe the barrier geometry. The developed method was applied to a hypothetical industrial site with a size of 200 × 200 conventional units for four types of SAD distribution over the surface of the industrial site: 'fragmentation', 'diffuse', 'uniform' and 'random'. The method of Lorentz curves was applied to estimate the compactness of the distributions of SAD and the ADER for the considered radiation sources. It was shown that the difference between the Lorentz curve for SAD and ADER means that the determination of the spatial distribution of SAD over the industrial site by solving the integral equation is essentially useful for determining the location of radiation source locations on the industrial site. The accuracy of SAD reconstruction depends on the following parameters: resolution (fragmentation) of the raster, the height of the radiation detector above the scanned surface, and the angular aperture of the radiation detector. The measurement of ADER is simpler and quicker than the direct measurement of SAD and its distribution. This represents a significant advantage if SAD distribution needs to be determined in areas with high radiation dose-rate during limited time. The developed method is useful for supporting radiation monitoring and optimizing the remediation of nuclear legacies, as well as during the recovery phase after a major accident.


Assuntos
Monitoramento de Radiação , Radioisótopos , Monitoramento de Radiação/métodos
2.
J Radiol Prot ; 43(4)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37797613

RESUMO

A method for reconstructing surface activity density (SAD) maps based on the solution of the Fredholm equation has been developed and applied. The construction of SAD maps was carried out for the site of the temporary storage (STS) of spent fuel and radioactive waste (RW) in Andreeva Bay using the results of measuring campaign in 2001-2002 and for the sheltering construction of the solid RW using the results of measurements in 2021. The Fredholm equation was solved in two versions: under conditions of a barrier-free environment and taking into account buildings and structures located on the industrial site of the STS Andreeva Bay. Lorenz curves were generated to assess the compactness of the distributions of SAD and ambient dose equivalent rate (ADER) for the industrial site and the sheltering construction at STS Andreeva Bay, the area of the IV stage uranium tailing site near the city of Istiklol in the Republic of Tajikistan, and for roofs of the Chernobyl nuclear power plant. The nature of impact of the resolution (fragmentation) of the raster, the value of the radius of mutual influence of points (contamination sites), the height of the radiation detector above the scanned surface and the angular aperture of the radiation detector on the accuracy of the SAD reconstruction is shown. The method developed allows more accurate planning of decontamination work when only ADER measurements data is available. The proposed method can be applied to support the process of decontamination of radioactively contaminated territories, in particular during the remediation of the STS Andreeva Bay.


Assuntos
Acidente Nuclear de Chernobyl , Monitoramento de Radiação , Resíduos Radioativos , Baías , Monitoramento de Radiação/métodos , Resíduos Radioativos/análise , Radioisótopos
3.
J Radiol Prot ; 43(3)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37489839

RESUMO

In the 1960s, a shore technical base (STB) was established at Andreeva Bay on the Kola Peninsula, in northwest Russia. The STB maintained nuclear submarines and the nuclear icebreaker fleet, receiving and storing fresh and spent nuclear fuel (SNF) as well as solid and liquid radioactive waste (RW). It was subsequently re-designated as a site for temporary storage (STS) for SNF and RW. Over time, the SNF storage facilities partly lost their containment functions, leading to radioactive contamination of workshops and the site above permitted values. The technological and engineering infrastructure at the site was also significantly degraded as well as the condition of the stored SNF. At present, the STS Andreeva Bay facility is under decommissioning. This paper describes progress with the creation of safe working measures for workers involved in site remediation and SNF recovery operations, including the determination of safe shift times in high radiation areas, as part of overall optimization of safety. Results are presented for the successful application of these measures in the period 2019-2021, during which time significant SNF recovery and removal operations were completed without incident. Significant important experience has been gained to support safe removal of remaining SNF, including the most hazardous degraded fuel, as well as recovery of other higher level RW and decommissioning of the old storage buildings and structures.


Assuntos
Monitoramento de Radiação , Resíduos Radioativos , Humanos , Baías , Monitoramento de Radiação/métodos , Resíduos Radioativos/análise , Reatores Nucleares , Federação Russa
4.
J Radiol Prot ; 40(2): 410-430, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31968313

RESUMO

This paper deals with classification of dose distributions of nuclear workers based on antikurtosis (Q) and entropy coefficients (K) and their relationship presented in QK-diagrams. It is shown that determination of the most appropriate distribution to adopt, for a specific data set of a wide range of input data, requires building and analysing QK-diagrams for distributions of logarithms of individual doses. Actual dose distributions for emergency and occupational exposure situations were then considered, as well as doses for one day of work during clean-up and routine activities. It is shown that, in all cases, three types of distributions of logarithms of individual doses were present: normal, Weibull and Chapeau. The location of the representation point of a dose distribution reflects the degree of dose control of the group of workers whose individual doses are collectively displayed in the QK-diagram. The more the representation point of the analysed distribution of the logarithms of the individual dose of a given contingent of workers deviates from the point of the lognormal distribution, the more there was intervention in the process of individual dose accumulation. Thus, QK-diagrams could be used to develop a dose control function. It is shown that the hybrid lognormal distribution, which is widely used in the field of radiation safety, for the purpose of approximation of real dose distributions, is unable to satisfactorily describe many dose distributions arising in aftermath operations and occupational exposure.


Assuntos
Exposição Ocupacional/classificação , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Liberação Nociva de Radioativos/classificação , Humanos , Método de Monte Carlo , Doenças Profissionais/prevenção & controle , Lesões por Radiação/prevenção & controle , Monitoramento de Radiação , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...