Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Epigenetics ; 19(1): 2308920, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38525786

RESUMO

Accurately identifying life-threatening prostate cancer (PCa) at time of diagnosis remains an unsolved problem. We evaluated whether DNA methylation status of selected candidate genes can predict the risk of metastasis beyond clinical risk factors in men with untreated PCa. A nested case-control study was conducted among men diagnosed with localized PCa at Kaiser Permanente California between 01/01/1997-12/31/2006 who did not receive curative treatments. Cases were those who developed metastasis within 10 years from diagnosis. Controls were selected using density sampling. Ninety-eight candidate genes were selected from functional categories of cell cycle control, metastasis/tumour suppressors, cell signalling, cell adhesion/motility/invasion, angiogenesis, and immune function, and 41 from pluripotency genes. Cancer DNA from diagnostic biopsy blocks were extracted and analysed. Associations of methylation status were assessed using CpG site level and principal components-based analysis in conditional logistic regressions. In 215 cases and 404 controls, 27 candidate genes were found to be statistically significant in at least one of the two analytical approaches. The agreement between the methods was 25.9% (7 candidate genes, including 2 pluripotency markers). The DNA methylation status of several candidate genes was significantly associated with risk of metastasis in untreated localized PCa patients. These findings may inform future risk prediction models for PCa metastasis beyond clinical characteristics.


Assuntos
Metilação de DNA , Neoplasias da Próstata , Masculino , Humanos , Estudos de Casos e Controles , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco
2.
Am J Hum Genet ; 111(3): 456-472, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38367619

RESUMO

The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.


Assuntos
MicroRNAs , Fumantes , Humanos , Nicotina , Epigênese Genética/genética , Epigenoma , Estudos de Coortes , Estudos Prospectivos , Estudo de Associação Genômica Ampla , Metilação de DNA/genética , Ilhas de CpG/genética , Receptores de Peptídeos/genética , Receptores Acoplados a Proteínas G/genética
3.
Cancer Med ; 12(18): 18837-18849, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37694549

RESUMO

BACKGROUND: We used a genome-wide discovery approach to identify methylation markers associated with metastasis in men with localized prostate cancer (PCa), as better identification of those at high risk of metastasis can inform treatment decision-making. METHODS: We identified men with localized PCa at Kaiser Permanente California (January 1, 1997-December 31, 2006) who did not receive curative treatment and followed them for 10 years to determine metastasis status. Cases were chart review-confirmed metastasis, and controls were matched using density sampling. We extracted DNA from the cancerous areas in the archived diagnostic tissue blocks. We used Illumina's Infinium MethylationEPIC BeadChip for methylation interrogation. We used conditional logistic regression and Bonferroni's correction to identify methylation markers associated with metastasis. In a separate validation cohort (2007), we evaluated the added predictive utility of the methylation score beyond clinical risk score. RESULTS: Among 215 cases and 404 controls, 31 CpG sites were significantly associated with metastasis status. Adding the methylation score to the clinical risk score did not meaningfully improve the c-statistic (0.80-0.81) in the validation cohort, though the score itself was statistically significant (p < 0.01). In the validation cohort, both clinical risk score alone and methylation marker score alone are well calibrated for predicted 10-year metastasis risks. Adding the methylation score to the clinical risk score only marginally improved predictive risk calibration. CONCLUSION: Our findings do not support the use of these markers to improve clinical risk prediction. The methylation markers identified may inform novel hypothesis in the roles of these genetic regions in metastasis development.


Assuntos
Metilação de DNA , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Fatores de Risco , Ilhas de CpG
4.
Eur Urol Oncol ; 6(5): 516-524, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37087309

RESUMO

BACKGROUND: Neoadjuvant chemotherapy (NAC) is the standard of care in muscle-invasive bladder cancer (MIBC). However, treatment is intense, and the overall benefit is small, necessitating effective biomarkers to identify patients who will benefit most. OBJECTIVE: To characterize cell-free DNA (cfDNA) methylation in patients receiving NAC in SWOG S1314, a prospective cooperative group trial, and to correlate the methylation signatures with pathologic response at radical cystectomy. DESIGN, SETTING, AND PARTICIPANTS: SWOG S1314 is a prospective cooperative group trial for patients with MIBC (cT2-T4aN0M0, ≥5 mm of viable tumor), with a primary objective of evaluating the coexpression extrapolation (COXEN) gene expression signature as a predictor of NAC response, defined as achieving pT0N0 or ≤pT1N0 at radical cystectomy. For the current exploratory analysis, blood samples were collected prospectively from 72 patients in S1314 before and during NAC, and plasma cfDNA methylation was measured using the Infinium MethylationEPIC BeadChip array. INTERVENTION: No additional interventions besides plasma collection. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Differential methylation between pathologic responders (≤pT1N0) and nonresponders was analyzed, and a classifier predictive of treatment response was generated using the Random Forest machine learning algorithm. RESULTS AND LIMITATIONS: Using prechemotherapy plasma cfDNA, we developed a methylation-based response score (mR-score) predictive of pathologic response. Plasma samples collected after the first cycle of NAC yielded mR-scores with similar predictive ability. Furthermore, we used cfDNA methylation data to calculate the circulating bladder DNA fraction, which had a modest but independent predictive ability for treatment response. In a model combining mR-score and circulating bladder DNA fraction, we correctly predicted pathologic response in 79% of patients based on their plasma collected at baseline and after one cycle of chemotherapy. Limitations of this study included a limited sample size and relatively low circulating bladder DNA levels. CONCLUSIONS: Our study provides the proof of concept that cfDNA methylation can be used to generate classifiers of NAC response in bladder cancer patients. PATIENT SUMMARY: In this exploratory analysis of S1314, we demonstrated that cell-free DNA methylation can be profiled to generate biomarker signatures associated with neoadjuvant chemotherapy response. With validation in additional cohorts, this minimally invasive approach may be used to predict chemotherapy response in locally advanced bladder cancer and perhaps also in metastatic disease.


Assuntos
Ácidos Nucleicos Livres , Terapia Neoadjuvante , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores , Ácidos Nucleicos Livres/genética , Quimioterapia Adjuvante , DNA/uso terapêutico , Metilação de DNA , Músculos/patologia , Estudos Prospectivos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
5.
Cell Mol Neurobiol ; 43(5): 2289-2307, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36596913

RESUMO

Alzheimer's disease is a neurodegenerative disorder clinically defined by gradual cognitive impairment and alteration in executive function. We conducted an epigenome-wide association study (EWAS) of a clinically and neuropathologically characterized cohort of 296 brains, including Alzheimer's disease (AD) and non-demented controls (ND), exploring the relationship with the RNA expression from matched donors. We detected 5246 CpGs and 832 regions differentially methylated, finding overlap with previous EWAS but also new associations. CpGs previously identified in ANK1, MYOC, and RHBDF2 were differentially methylated, and one of our top hits (GPR56) was not previously detected. ANK1 was differentially methylated at the region level, along with APOE and RHBDF2. Only a small number of genes showed a correlation between DNA methylation and RNA expression statistically significant. Multiblock partial least-squares discriminant analysis showed several CpG sites and RNAs discriminating AD and ND (AUC = 0.908) and strongly correlated with each other. Furthermore, the CpG site cg25038311 was negatively correlated with the expression of 22 genes. Finally, with the functional epigenetic module analysis, we identified a protein-protein network characterized by inverse RNA/DNA methylation correlation and enriched for "Regulation of insulin-like growth factor transport", with IGF1 as the hub gene. Our results confirm and extend the previous EWAS, providing new information about a brain region not previously explored in AD DNA methylation studies. The relationship between DNA methylation and gene expression is not significant for most of the genes in our sample, consistently with the complexities in the gene expression regulation.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Metilação de DNA/genética , RNA/metabolismo , Lobo Temporal/metabolismo
6.
Nat Commun ; 13(1): 6077, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241624

RESUMO

Aberrant DNA methylation constitutes a key feature of pediatric acute lymphoblastic leukemia at diagnosis, however its role as a predisposing or early contributor to leukemia development remains unknown. Here, we evaluate DNA methylation at birth in 41 leukemia-discordant monozygotic twin pairs using the Illumina EPIC array on archived neonatal blood spots to identify epigenetic variation associated with development of pediatric acute lymphoblastic leukemia, independent of genetic influence. Through conditional logistic regression we identify 240 significant probes and 10 regions associated with the discordant onset of leukemia. We identify a significant negative coefficient bias, indicating DNA hypomethylation in cases, across the array and enhanced in open sea, shelf/shore, and gene body regions compared to promoter and CpG island regions. Here, we show an association between global DNA hypomethylation and future development of pediatric acute lymphoblastic leukemia across disease-discordant genetically identical twins, implying DNA hypomethylation may contribute more generally to leukemia risk.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Gêmeos Monozigóticos , Criança , Ilhas de CpG/genética , DNA , Metilação de DNA , Epigênese Genética , Humanos , Recém-Nascido , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Gêmeos Monozigóticos/genética
7.
Sci Rep ; 11(1): 22773, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815430

RESUMO

We constructed and analyzed the whole transcriptome in leukocytes of healthy adult vapers (with/without a history of smoking), 'exclusive' cigarette smokers, and controls (non-users of any tobacco products). Furthermore, we performed single-gene validation of expression data, and biochemical validation of vaping/smoking status by plasma cotinine measurement. Computational modeling, combining primary analysis (age- and sex-adjusted limmaVoom) and sensitivity analysis (cumulative e-liquid- and pack-year modeling), revealed that 'current' vaping, but not 'past' smoking, is significantly associated with gene dysregulation in vapers. Comparative analysis of the gene networks and canonical pathways dysregulated in vapers and smokers showed strikingly similar patterns in the two groups, although the extent of transcriptomic changes was more pronounced in smokers than vapers. Of significance is the preferential targeting of mitochondrial genes in both vapers and smokers, concurrent with impaired functional networks, which drive mitochondrial DNA-related disorders. Equally significant is the dysregulation of immune response genes in vapers and smokers, modulated by upstream cytokines, including members of the interleukin and interferon family, which play a crucial role in inflammation. Our findings accord with the growing evidence on the central role of mitochondria as signaling organelles involved in immunity and inflammatory response, which are fundamental to disease development.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Genes Mitocondriais , Inflamação/patologia , Doenças Mitocondriais/patologia , Fumar Tabaco/efeitos adversos , Vaping/efeitos adversos , Adulto , Estudos de Casos e Controles , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Perfilação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Masculino , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/genética
8.
PLoS One ; 16(9): e0253250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34520456

RESUMO

Recent DepMap CRISPR-Cas9 single gene disruptions have identified genes more essential to proliferation in tissue culture. It would be valuable to translate these finding with measurements more practical for human tissues. Here we show that DepMap essential genes and other literature curated functional genes exhibit cell-specific preferential epigenetic conservation when DNA methylation measurements are compared between replicate cell lines and between intestinal crypts from the same individual. Culture experiments indicate that epigenetic drift accumulates through time with smaller differences in more functional genes. In NCI-60 cell lines, greater targeted gene conservation correlated with greater drug sensitivity. These studies indicate that two measurements separated in time allow normal or neoplastic cells to signal through conservation which human genes are more essential to their survival in vitro or in vivo.


Assuntos
Técnicas de Cultura de Células/métodos , Metilação de DNA , Genes Essenciais , Linhagem Celular Tumoral , Epigênese Genética , Regulação da Expressão Gênica , Deriva Genética , Humanos
9.
Neuroimage ; 242: 118450, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358656

RESUMO

A fundamental task in neuroscience is to characterize the brain's developmental course. While replicable group-level models of structural brain development from childhood to adulthood have recently been identified, we have yet to quantify and understand individual differences in structural brain development. The present study examined inter-individual variability and sex differences in changes in brain structure, as assessed by anatomical MRI, across ages 8.0-26.0 years in 269 participants (149 females) with three time points of data (807 scans), drawn from three longitudinal datasets collected in the Netherlands, Norway, and USA. We further investigated the relationship between overall brain size and developmental changes, as well as how females and males differed in change variability across development. There was considerable inter-individual variability in the magnitude of changes observed for all examined brain measures. The majority of individuals demonstrated decreases in total gray matter volume, cortex volume, mean cortical thickness, and white matter surface area in mid-adolescence, with more variability present during the transition into adolescence and the transition into early adulthood. While most individuals demonstrated increases in white matter volume in early adolescence, this shifted to a majority demonstrating stability starting in mid-to-late adolescence. We observed sex differences in these patterns, and also an association between the size of an individual's brain structure and the overall rate of change for the structure. The present study provides new insight as to the amount of individual variance in changes in structural morphometrics from late childhood to early adulthood in order to obtain a more nuanced picture of brain development. The observed individual- and sex-differences in brain changes also highlight the importance of further studying individual variation in developmental patterns in healthy, at-risk, and clinical populations.


Assuntos
Variação Biológica da População/fisiologia , Encéfalo/crescimento & desenvolvimento , Adolescente , Adulto , Criança , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Masculino , Caracteres Sexuais , Substância Branca/crescimento & desenvolvimento , Adulto Jovem
10.
Front Oncol ; 11: 614927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659216

RESUMO

BACKGROUND: Muscle-invasive bladder cancer (MIBC) accounts for approximately 20% of all urothelial bladder carcinomas (UBC) at time of diagnosis, and up to 30% of patients with non-muscle invasive UBC will progress to MIBC over time. An increasing body of evidence has revealed a strong correlation between aberrant DNA methylation and tumorigenesis in MIBC. RESULTS: Using The Cancer Genome Atlas (TCGA) molecular data for 413 patients, we described a DNA methylation-based signature as a prognostic factor for overall survival (OS) in MIBC patients. By using a least absolute shrinkage and selection operator (LASSO) model, differentially methylated regions were first identified using multiple criteria followed by survival and LASSO analyses to identify DNA methylation probes related to OS and build a classifier to stratify patients with MIBC. The prognostic value of the classifier, referred to as risk score (RS), was validated in a held-out testing set from the TCGA MIBC cohort. Finally, receiver operating characteristic (ROC) analysis was used to compare the prognostic accuracy of the models built with RS alone, RS plus clinicopathologic features, and clinicopathologic features alone. We found that our seven-probe classifier-based RS stratifies patients into high- and low-risk groups for overall survival (OS) in the testing set (n = 137) (AUC at 3 years, 0.65; AUC at 5 years, 0.65). In addition, RS significantly improved the prognostic model when it was combined with clinical information including age, smoking status, Tumor (T) stage, and Lymph node metastasis (N) stage. CONCLUSIONS: The DNA methylation-based RS can be a useful tool to predict the accuracy of preoperative and/or post-cystectomy models of OS in MIBC patients.

11.
Nat Commun ; 12(1): 821, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547282

RESUMO

Down syndrome is associated with genome-wide perturbation of gene expression, which may be mediated by epigenetic changes. We perform an epigenome-wide association study on neonatal bloodspots comparing 196 newborns with Down syndrome and 439 newborns without Down syndrome, adjusting for cell-type heterogeneity, which identifies 652 epigenome-wide significant CpGs (P < 7.67 × 10-8) and 1,052 differentially methylated regions. Differential methylation at promoter/enhancer regions correlates with gene expression changes in Down syndrome versus non-Down syndrome fetal liver hematopoietic stem/progenitor cells (P < 0.0001). The top two differentially methylated regions overlap RUNX1 and FLI1, both important regulators of megakaryopoiesis and hematopoietic development, with significant hypermethylation at promoter regions of these two genes. Excluding Down syndrome newborns harboring preleukemic GATA1 mutations (N = 30), identified by targeted sequencing, has minimal impact on the epigenome-wide association study results. Down syndrome has profound, genome-wide effects on DNA methylation in hematopoietic cells in early life, which may contribute to the high frequency of hematological problems, including leukemia, in children with Down syndrome.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Síndrome de Down/genética , Epigênese Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Estudos de Casos e Controles , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ilhas de CpG , Metilação de DNA , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Feminino , Feto , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Genoma Humano , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/patologia , Humanos , Recém-Nascido , Fígado/metabolismo , Fígado/patologia , Masculino , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/metabolismo
12.
F1000Res ; 9: 586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33299548

RESUMO

There are two frameworks for characterizing mutational signatures which are commonly used to describe the nucleotide patterns that arise from mutational processes. Estimated mutational signatures from fitting these two methods in human cancer can be found online, in the Catalogue Of Somatic Mutations In Cancer (COSMIC) website or a GitHub repository. The two frameworks make differing assumptions regarding independence of base pairs and for that reason may produce different results. Consequently, there is a need to compare and contrast the results of the two methods, but no such tool currently exists. In this paper, we provide a simple and intuitive interface that allows such comparisons to be easily performed. When using our software, the user may download published mutational signatures of either type. Mutational signatures from the pmsignature data source are expanded to probabilistic vectors of 96-possible mutation types, the same model specification used by COSMIC, and then compared to COSMIC signatures. Cosine similarity measures the extent of signature similarity. iMutSig provides a simple and user-friendly web application allowing researchers to compare signatures from COSMIC to those from pmsignature, and vice versa. Furthermore, iMutSig allows users to input a self-defined mutational signature and examine its similarity to published signatures from both data sources. iMutSig is accessible online and source code is available for download on GitHub.


Assuntos
Mutação , Neoplasias/genética , Software , Análise Mutacional de DNA , Humanos , Internet
13.
Nutrients ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266012

RESUMO

We sought to determine if DNA methylation patterns differed between vegans and non-vegetarians in the Adventist Health Study-2 cohort. Genome-wide DNA methylation derived from buffy coat was profiled in 62 vegans and 142 non-vegetarians. Using linear regression, methylation of CpG sites and genes was categorized or summarized according to various genic/intergenic regions and CpG island-related regions, as well as the promoter. Methylation of genes was measured as the average methylation of available CpG's annotated to the nominated region of the respective gene. A permutation method defining the null distribution adapted from Storey et al. was used to adjust for false discovery. Differences in methylation of several CpG sites and genes were detected at a false discovery rate < 0.05 in region-specific and overall analyses. A vegan diet was associated predominantly with hypomethylation of genes, most notably methyltransferase-like 1 (METTL1). Although a limited number of differentially methylated features were detected in the current study, the false discovery method revealed that a much larger proportion of differentially methylated genes and sites exist, and could be detected with a larger sample size. Our findings suggest modest differences in DNA methylation in vegans and non-vegetarians, with a much greater number of detectable significant differences expected with a larger sample.


Assuntos
Metilação de DNA , Veganos , Negro ou Afro-Americano , Idoso , Índice de Massa Corporal , Estudos de Coortes , Dieta Vegana , Dieta Vegetariana , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Vegetarianos , População Branca
14.
JCO Clin Cancer Inform ; 4: 100-107, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32078366

RESUMO

PURPOSE: Different epigenetic configurations allow one genome to develop into multiple cell types. Although the rules governing what epigenetic features confer gene expression are increasingly being understood, much remains uncertain. Here, we used a novel software package, Methcon5, to explore whether the principle of biologic conservation can be used to identify expressed genes. The hypothesis is that epigenetic configurations of important expressed genes will be conserved within a tissue. MATERIALS AND METHODS: We compared the DNA methylation of approximately 850,000 CpG sites between multiple clonal crypts or glands of human colon, small intestine, and endometrium. We performed this analysis using the new software package, Methcon5, which enables detection of regions of high (or low) conservation. RESULTS: We showed that DNA methylation is preferentially conserved at gene-associated CpG sites, particularly in gene promoters (eg, near the transcription start site) or the first exon. Furthermore, higher conservation correlated well with gene expression levels and performed better than promoter DNA methylation levels. Most conserved genes are in canonical housekeeping pathways. CONCLUSION: This study introduces the new software package, Methcon5. In this example application, we showed that epigenetic conservation provides an alternative method for identifying functional genomic regions in human tissues.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Neoplasias/genética , Regiões Promotoras Genéticas , Humanos , Neoplasias/patologia , Prognóstico , Software
15.
Int J Cancer ; 146(11): 3065-3076, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017074

RESUMO

Highly tumorigenic, drug-resistant cancer stem-like cells drive cancer progression. These aggressive cells can arise repeatedly from bulk tumor cells independently of mutational events, suggesting an epigenetic mechanism. To test this possibility, we studied bladder cancer cells as they cyclically shifted to and from a cancer stem-like phenotype, and we discovered that these two states exhibit distinct DNA methylation and chromatin accessibility. Most differential chromatin accessibility was independent of methylation and affected the expression of driver genes such as E2F3, a cell cycle regulator associated with aggressive bladder cancer. Cancer stem-like cells exhibited increased E2F3 promoter accessibility and increased E2F3 expression that drove cell migration, invasiveness and drug resistance. Epigenetic interference using a DNA methylation inhibitor blocked the transition to a cancer stem-like state and reduced E2F3 expression. Our findings indicate that epigenetic plasticity plays a key role in the transition to and from an aggressive, drug-resistant phenotype.


Assuntos
Plasticidade Celular/genética , Metilação de DNA/genética , Fator de Transcrição E2F3/genética , Células-Tronco Neoplásicas/patologia , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição E2F3/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Neoplasias da Bexiga Urinária/patologia
16.
BMC Res Notes ; 12(1): 788, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796096

RESUMO

OBJECTIVE: Recently, many tumor sequencing studies have inferred and reported on mutational signatures, short nucleotide patterns at which particular somatic base substitutions appear more often. A number of signatures reflect biological processes in the patient and factors associated with cancer risk. Our goal is to infer mutational signatures appearing in colon cancer, a cancer for which environmental risk factors vary by cancer subtype, and compare the signatures to those in adult stem cells from normal colon. We also compare the mutational signatures to others in the literature. RESULTS: We apply a probabilistic mutation signature model to somatic mutations previously reported for six adult normal colon stem cells and 431 colon adenocarcinomas. We infer six mutational signatures in colon cancer, four being specific to tumors with hypermutation. Just two signatures explained the majority of mutations in the small number of normal aging colon samples. All six signatures are independently identified in a series of 295 Chinese colorectal cancers.


Assuntos
Adenocarcinoma/genética , Neoplasias do Colo/genética , Mutação , Células-Tronco Adultas , Colo/citologia , Colo/patologia , Humanos , Modelos Genéticos
17.
PeerJ ; 7: e7557, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523512

RESUMO

We propose a hierarchical latent Dirichlet allocation model (HiLDA) for characterizing somatic mutation data in cancer. The method allows us to infer mutational patterns and their relative frequencies in a set of tumor mutational catalogs and to compare the estimated frequencies between tumor sets. We apply our method to two datasets, one containing somatic mutations in colon cancer by the time of occurrence, before or after tumor initiation, and the second containing somatic mutations in esophageal cancer by sex, age, smoking status, and tumor site. In colon cancer, the relative frequencies of mutational patterns were found significantly associated with the time of occurrence of mutations. In esophageal cancer, the relative frequencies were significantly associated with the tumor site. Our novel method provides higher statistical power for detecting differences in mutational signatures.

18.
JNCI Cancer Spectr ; 3(3): pkz045, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31555759

RESUMO

BACKGROUND: Early exposure to estrogen-like compounds has been implicated in the etiology of testicular cancer, but individual level epidemiologic data addressing this hypothesis are scarce. The synthetic estrogen diethylstilbestrol (DES) was administered during pregnancy from 1948 to 1971, but sequelae of in utero exposure have been more extensively characterized in females than in males. METHODS: By systematic review, we sought to identify all epidemiologic research relating testicular cancer to a history of in utero exposure to diethylstilbestrol. Identified studies were critically appraised to assemble a set of nonredundant data in which any in utero exposure to DES was compared between men with incident testicular cancer and cancer-free men. These data were synthesized using random effects meta-analysis to estimate the summary association between in utero DES exposure and testicular cancer. RESULTS: By meta-analysis of data from the six qualifying studies, the summary odds ratio estimate of the in utero DES-testicular cancer association was 2.98 (95% confidence interval = 1.15 to 7.67). CONCLUSIONS: Results of this comprehensive meta-analysis accord with a threefold increase in testicular cancer risk among men who were exposed in utero to DES, implicating early hormonal exposures in etiology of testicular cancer. Because use of DES ceased in 1971, this work may provide the most comprehensive estimate of this association that will be made.

19.
Int J Mol Sci ; 20(3)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744164

RESUMO

We have investigated the regulation of genes and associated molecular pathways, genome-wide, in oral cells of electronic cigarette (e-cigs) users and cigarette smokers as compared to non-smokers. Interrogation of the oral transcriptome by RNA-sequencing (RNA-seq) analysis showed significant number of aberrantly expressed transcripts in both e-cig users (vapers) and smokers relative to non-smokers; however, smokers had ~50% more differentially expressed transcripts than vapers (1726 versus 1152). Whereas the deregulated transcripts in smokers were predominately from protein-coding genes (79% versus 53% in vapers), nearly 28% of the aberrantly expressed transcripts in vapers (versus 8% in smokers) belonged to regulatory non-coding RNAs, including long intergenic non-coding, antisense, small nucleolar and misc RNA (P < 0.0001). Molecular pathway and functional network analyses revealed that "cancer" was the top disease associated with the deregulated genes in both e-cig users and smokers (~62% versus 79%). Examination of the canonical pathways and networks modulated in either e-cig users or smokers identified the "Wnt/Ca⁺ pathway" in vapers and the "integrin signaling pathway" in smokers as the most affected pathways. Amongst the overlapping functional pathways impacted in both e-cig users and smokers, the "Rho family GTPases signaling pathway" was the top disrupted pathway, although the number of affected targets was three times higher in smokers than vapers. In conclusion, we observed deregulation of critically important genes and associated molecular pathways in the oral epithelium of vapers that bears both resemblances and differences with that of smokers. Our findings have significant implications for public health and tobacco regulatory science.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Mucosa Bucal/metabolismo , Transdução de Sinais , Biologia Computacional/métodos , Feminino , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Reprodutibilidade dos Testes , Fumar
20.
Sci Rep ; 8(1): 17292, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470817

RESUMO

Genomic intratumoral heterogeneity (ITH) is common in cancers, but the extent of phenotypic ITH is uncertain because most subclonal mutations are passengers. Since tumor phenotypes are largely driven by epigenetics, methylomic analyses can provide insights into phenotypic ITH. Following this principle, we determined the extent of epigenetic ITH in 16 human colorectal tumors by comparing the methylomes from spatially separated regions in each tumor. Methylomes from opposite tumor sides were similar (Pearson correlation >0.95) with little evidence of ITH or stepwise selection during growth, suggesting that the epigenome of a sampled tumor largely reflects that of its founder cell. Epigenetic conservation was functional, with higher conservation at promoters and expressed genes compared to non-coding regions. Despite epigenomic conservation, RNA expression varied between individual tumor glands, indicating continued adaption during growth. Because many promoters and enhancers were unmethylated, continued adaptation may be due to phenotypic plasticity. Gene enrichment analyses identified that interferon signaling and antigen-processing and presenting pathways were strongly conserved during tumor growth, suggesting a mechanism for immune evasion. In summary, our findings suggest that epigenomes are preferentially conserved during tumor growth and that early tumor cells are poised for rapid growth, phenotypic adaptation, and immune evasion.


Assuntos
Colo/metabolismo , Neoplasias Colorretais/genética , Epigenômica , Heterogeneidade Genética , Genômica/métodos , Vigilância Imunológica , Animais , Estudos de Casos e Controles , Colo/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Fenótipo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...