Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35323818

RESUMO

The mass production of lithium-ion batteries and lithium-rich e-products that are required for electric vehicles, energy storage devices, and cloud-connected electronics is driving an unprecedented demand for lithium resources. Current lithium production technologies, in which extraction and purification are typically achieved by hydrometallurgical routes, possess strong environmental impact but are also energy-intensive and require extensive operational capabilities. The emergence of selective membrane materials and associated electro-processes offers an avenue to reduce these energy and cost penalties and create more sustainable lithium production approaches. In this review, lithium recovery technologies are discussed considering the origin of the lithium, which can be primary sources such as minerals and brines or e-waste sources generated from recycling of batteries and other e-products. The relevance of electro-membrane processes for selective lithium recovery is discussed as well as the potential and shortfalls of current electro-membrane methods.

2.
Membranes (Basel) ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207026

RESUMO

This paper shows the investigation for the optimal anion exchange membranes (AEM) supporting the desorption step of the HCDI process. The chemical modification of PVDF by diethylene triamine created the AEM. To confirm the ion-exchange character of materials, the chemical analysis with FTIR, SEM, surface energetics, and transportation analysis were applied. Next, the investigated membranes were applied for the sorption and desorption of lithium chloride. The specific sorptive parameters were higher according to the incorporation of the nitrogen groups into polymeric chains. Considering the desorption efficiency, membranes modified by four days were selected for further evaluation. The application in the HCDI process allowed reaching the desorption efficiency at 90%. The system composed of PVDF-DETA4 membrane was suitable for sorption 30 mg/g of salt. By applying the PVDF-DETA4 membrane, it is possible to concentrate LiCl with four factors. The anion exchange character of the developed membrane was confirmed by adsorption kinetics and isotherms of chlorides, nitrates, sodium, and lithium. The prepared membrane could be considered a perspective material suitable for concentration salt with electro-driven technologies for the above reasons.

3.
Membranes (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34940443

RESUMO

Membrane technologies have found a significant application in separation processes in an exceeding range of industrial fields. The crucial part that is decided regarding the efficiency and effectivity of separation is the type of membrane. The membranes deal with separation problems, working under the various mechanisms of transportation of selected species. This review compares significant types of entrapped matter (ions, compounds, and particles) within membrane technology. The ion-exchange membranes, molecularly imprinted membranes, smart membranes, and adsorptive membranes are investigated. Here, we focus on the selective separation through the above types of membranes and detect their preparation methods. Firstly, the explanation of transportation and preparation of each type of membrane evaluated is provided. Next, the working and application phenomena are evaluated. Finally, the review discusses the membrane modification methods and briefly provides differences in the properties that occurred depending on the type of materials used and the modification protocol.

4.
Polymers (Basel) ; 9(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30965978

RESUMO

A facile and low-cost method has been developed for separation of oily wastewater. Polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) nanofibers laminated on a supporting layer were tested. In order to create highly permeable and fouling-resistant membranes, surface modifications of both fibers were conducted. The results of oily wastewater separation showed that, after low vacuum microwave plasma treatment with Argon (Ar) and chemical modification with sodium hydroxide (NaOH), the membranes had excellent hydrophilicity, due to the formation of active carboxylic groups. However, the membrane performance failed during the cleaning procedures. Titanium dioxide (TiO2) was grafted onto the surface of membranes to give them highly permeable and fouling-resistance properties. The results of the self-cleaning experiment indicated that grafting of TiO2 on the surface of the membranes after their pre-treatment with Ar plasma and NaOH increased the permeability and the anti-fouling properties. A new surface modification method using a combination of plasma and chemical treatment was introduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA