Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376516

RESUMO

This study aimed to analyze the dynamics, duration, and production of total and neutralizing antibodies induced by the BNT162b2 vaccine and the possible effect of gender and prior SARS-CoV-2 infection on the generation of these antibodies. Total antibodies were quantified via chemiluminescent microparticle immunoassay (CMIA), and neutralizing antibodies were quantified using the cPass SARS-CoV-2 kit. Individuals with a history of COVID-19 produced twice as many antibodies than vaccinated individuals without prior SARS-CoV-2 infection, with an exponential increase observed in just six days. In those without a COVID-19 history, similar antibody production was reached 45 days after vaccination. Although total antibodies decline considerably in the first two months, the neutralizing antibodies and their inhibitory capacity (>96%) persist up to 6 months after the first dose. There was a tendency for higher total antibodies in women than men, but not at the inhibition capacity level. We suggest that the decline in total antibodies should not be considered as an indicator of loss of protective immunity because most antibodies decay two months after the second dose, but neutralizing antibodies remain constant for at least six months. Therefore, these latter antibodies could be better indicators for estimating the time-dependent vaccine efficacy.

2.
J Inflamm Res ; 15: 4449-4466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958186

RESUMO

Purpose: Understanding the humoral immune response dynamics carried out by B cells in COVID-19 vaccination is little explored; therefore, we analyze the changes induced in the different cellular subpopulations of B cells after vaccination with BNT162b2 (Pfizer-BioNTech). Methods: This prospective cohort study evaluated thirty-nine immunized health workers (22 with prior COVID-19 and 17 without prior COVID-19) and ten subjects not vaccinated against SARS-CoV-2 (control group). B cell subpopulations (transitional, mature, naïve, memory, plasmablasts, early plasmablast, and double-negative B cells) and neutralizing antibody levels were analyzed and quantified by flow cytometry and ELISA, respectively. Results: The dynamics of the B cells subpopulations after vaccination showed the following pattern: the percentage of transitional B cells was higher in the prior COVID-19 group (p < 0.05), whereas virgin B cells were more prevalent in the group without prior COVID-19 (p < 0.05), mature B cells predominated in both vaccinated groups (p < 0.01), and memory B cells, plasmablasts, early plasmablasts, and double-negative B cells were higher in the not vaccinated group (p < 0.05). Conclusion: BNT162b2 vaccine induces changes in B cell subpopulations, especially generating plasma cells and producing neutralizing antibodies against SARS-CoV-2. However, the previous infection with SARS-CoV-2 does not significantly alter the dynamics of these subpopulations but induces more rapid and optimal antibody production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...