Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurorobot ; 17: 1044491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937553

RESUMO

Introduction: Socially Assistive Robotics has emerged as a potential tool for rehabilitating cognitive and developmental disorders in children with autism. Social robots found in the literature are often able to teach critical social skills, such as emotion recognition and physical interaction. Even though there are promising results in clinical studies, there is a lack of guidelines on selecting the appropriate robot and how to design and implement the child-robot interaction. Methods: This work aims to evaluate the impacts of a social robot designed with three different appearances according to the results of a participatory design (PD) process with the community. A validation study in the emotion recognition task was carried out with 21 children with autism. Results: Spectrum disorder results showed that robot-like appearances reached a higher percentage of children's attention and that participants performed better when recognizing simple emotions, such as happiness and sadness. Discussion: This study offers empirical support for continuing research on using SAR to promote social interaction with children with ASD. Further long-term research will help to identify the differences between high and low-functioning children.

2.
Front Neurorobot ; 15: 742281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970132

RESUMO

The constant growth of the population with mobility impairments, such as older adults and people suffering from neurological pathologies like Parkinson's disease (PD), has encouraged the development of multiple devices for gait assistance. Robotic walkers have emerged, improving physical stability and balance and providing cognitive aid in rehabilitation scenarios. Different studies evaluated human gait behavior with passive and active walkers to understand such rehabilitation processes. However, there is no evidence in the literature of studies with robotic walkers in daily living scenarios with older adults with Parkinson's disease. This study presents the assessment of the AGoRA Smart Walker using Ramps Tests and Timed Up and Go Test (TUGT). Ten older adults participated in the study, four had PD, and the remaining six had underlying conditions and fractures. Each of them underwent a physical assessment (i.e., Senior Fitness, hip, and knee strength tests) and then interacted with the AGoRA SW. Kinematic and physical interaction data were collected through the AGoRA walker's sensory interface. It was found that for lower limb strength tests, older adults with PD had increases of at least 15% in all parameters assessed. For the Sit to Stand Test, the Parkinson's group evidenced an increase of 23%, while for the Chair Sit and Reach Test (CSRT), this same group was only 0.04 m away from reaching the target. For the Ramp Up Test (RUT), the subjects had to make a greater effort, and significant differences (p-value = 0.04) were evidenced in the force they applied to the device. For the Ramp Down Test (RDT), the Parkinson's group exhibited a decrease in torque, and there were statistically significant differences (p-value = 0.01) due to the increase in the complexity of the task. In the Timed Up and Go Test (TUGT), the subjects presented significant differences in torque (p-value of 0.05) but not in force (p-value of 0.22) due to the effect of the admittance controller implemented in the study. Finally, the results suggested that the walker, represents a valuable tool for assisting people with gait motor deficits in tasks that demanded more physical effort adapting its behavior to the specific needs of each user.

3.
Sensors (Basel) ; 21(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067133

RESUMO

Smart walkers are commonly used as potential gait assistance devices, to provide physical and cognitive assistance within rehabilitation and clinical scenarios. To understand such rehabilitation processes, several biomechanical studies have been conducted to assess human gait with passive and active walkers. Several sessions were conducted with 11 healthy volunteers to assess three interaction strategies based on passive, low and high mechanical stiffness values on the AGoRA Smart Walker. The trials were carried out in a motion analysis laboratory. Kinematic data were also collected from the smart walker sensory interface. The interaction force between users and the device was recorded. The force required under passive and low stiffness modes was 56.66% and 67.48% smaller than the high stiffness mode, respectively. An increase of 17.03% for the hip range of motion, as well as the highest trunk's inclination, were obtained under the resistive mode, suggesting a compensating motion to exert a higher impulse force on the device. Kinematic and physical interaction data suggested that the high stiffness mode significantly affected the users' gait pattern. Results suggested that users compensated their kinematics, tilting their trunk and lower limbs to exert higher impulse forces on the device.


Assuntos
Marcha , Andadores , Fenômenos Biomecânicos , Humanos , Extremidade Inferior , Amplitude de Movimento Articular , Caminhada
4.
Sensors (Basel) ; 21(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069340

RESUMO

The constant growth of pathologies affecting human mobility has led to developing of different assistive devices to provide physical and cognitive assistance. Smart walkers are a particular type of these devices since they integrate navigation systems, path-following algorithms, and user interaction modules to ensure natural and intuitive interaction. Although these functionalities are often implemented in rehabilitation scenarios, there is a need to actively involve the healthcare professionals in the interaction loop while guaranteeing safety for them and patients. This work presents the validation of two visual feedback strategies for the teleoperation of a simulated robotic walker during an assisted navigation task. For this purpose, a group of 14 clinicians from the rehabilitation area formed the validation group. A simple path-following task was proposed, and the feedback strategies were assessed through the kinematic estimation error (KTE) and a usability survey. A KTE of 0.28 m was obtained for the feedback strategy on the joystick. Additionally, significant differences were found through a Mann-Whitney-Wilcoxon test for the perception of behavior and confidence towards the joystick according to the modes of interaction (p-values of 0.04 and 0.01, respectively). The use of visual feedback with this tool contributes to research areas such as remote management of therapies and monitoring rehabilitation of people's mobility.


Assuntos
Robótica , Tecnologia Assistiva , Retroalimentação Sensorial , Marcha , Humanos , Interface Usuário-Computador , Andadores
5.
IEEE Int Conf Rehabil Robot ; 2019: 905-910, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374745

RESUMO

This work presents a multimodal cognitive interaction strategy aiming at walker-assisted rehabilitation therapies, with special focus on post-stroke patients. Such interaction strategy is based on monitoring user's gait and face orientation to command the displacement of the smart walker. Users are able to actively command the steering of the walker by changing their face orientation, while their lower limbs movement affect the walker's linear velocity. The proposed system is validated using a smart walker and the results obtained point to the feasibility of employing such cognitive interaction in rehabilitation therapies.


Assuntos
Cognição/fisiologia , Reabilitação do Acidente Vascular Cerebral , Caminhada/fisiologia , Feminino , Humanos , Masculino
6.
Sensors (Basel) ; 19(13)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262036

RESUMO

The constant growth of the population with mobility impairments has led to the development of several gait assistance devices. Among these, smart walkers have emerged to provide physical and cognitive interactions during rehabilitation and assistance therapies, by means of robotic and electronic technologies. In this sense, this paper presents the development and implementation of a human-robot-environment interface on a robotic platform that emulates a smart walker, the AGoRA Walker. The interface includes modules such as a navigation system, a human detection system, a safety rules system, a user interaction system, a social interaction system and a set of autonomous and shared control strategies. The interface was validated through several tests on healthy volunteers with no gait impairments. The platform performance and usability was assessed, finding natural and intuitive interaction over the implemented control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...