Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Great Lakes Res ; 46(4): 1015-1027, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33424102

RESUMO

Whole-lake surveys of Lake Superior were completed during late summer in 2006, 2011, and 2016 to assess lower food web conditions under the Cooperative Science and Monitoring Initiative (CSMI). These surveys used a spatially stratified probability approach based on depth to assess food web conditions within different depth zones. We evaluated differences in crustacean zooplankton biomass, rotifer density, and the community structure of both groups in nearshore (<30 m), midshore (30-100 m), and offshore (>100 m) depth zones and investigated changes in these parameters within zones over time. Although nearshore crustacean biomasses and rotifer densities were highly variable, the depth zones differed from each other based on these parameters and should be considered separately. Crustacean biomass, community structure, and vertical position were consistent over time across depth zones. The differences that did occur were within the range of known annual variability. Total rotifer densities were lower in 2016 than in 2006 in all depth zones but the genera that contributed to the lower values were not the same across zones. Further studies are needed to know whether these differences reflect annual variability or long-term trends. Finally, we show how the depth zones used in this study can facilitate comparisons between monitoring programs. This is important because most zooplankton studies are limited to certain depth zones and changes in zooplankton parameters may not occur uniformly across zones. The high variability in nearshore zooplankton parameters suggests that additional research may be needed to effectively track changes there.

2.
J Great Lakes Res ; 45(1): 129-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728077

RESUMO

Hydrologic linkages among coastal wetland and nearshore areas allow coastal fish to move among the habitats, which has led to a variety of habitat use patterns. We determined nutritional support of coastal fishes from 12 wetland-nearshore habitat pairs using stable isotope analyses, which revealed differences among species and systems in multi-habitat use. Substantial (proportions > 0.30) nutrition often came from the habitat other than that in which fish were captured. Nearshore subsidies to coastal wetlands indicate wetlands are not exclusively exporters of energy and materials; rather, there is reciprocity in the mutual energetic support of nearshore and wetland food webs. Coastal wetland hydrogeomorphology influenced the amount of multi-habitat use by coastal fishes. Fishes from systems with relatively open interfaces between wetland and nearshore habitats exhibited less nutritional reliance on the habitat in which they were captured, and higher use of resources from the adjacent habitat. Comparisons of stable isotope analyses of nutrition with otolith analyses of occupancy indicated nutritional sources often corresponded with habitat occupancy; however, disparities among place of capture, otolith analyses, and nutritional analyses indicated differences in the types of support those analyses inform. Disparities between occupancy information and nutritional information can stem from movements for support functions other than foraging. Together, occupancy information from otolith microchemistry and nutritional information from stable isotope analyses provide complementary measures of the use of multiple habitats by mobile consumers. This work underscores the importance of protecting or restoring a diversity of coastal habitats and the hydrologic linkages among them.

3.
Rapid Commun Mass Spectrom ; 29(21): 2069-77, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26443408

RESUMO

RATIONALE: Normalizing δ(13) C values of animal tissue for lipid content is necessary to accurately interpret food-web relationships from stable isotope analysis. To reduce the effort and expense associated with chemical extraction of lipids, various studies have tested arithmetic mass balance to mathematically normalize δ(13) C values for lipid content; however, the approach assumes that lipid content is related to the tissue C:N ratio. METHODS: We evaluated two commonly used models for estimating tissue lipid content based on C:N ratio (a mass balance model and a stoichiometric model) by comparing model predictions to measure the lipid content of white muscle tissue. We then determined the effect of lipid model choice on δ(13) C values normalized using arithmetic mass balance. To do so, we used a collection of fish from Lake Superior spanning a wide range in lipid content (5% to 73% lipid). RESULTS: We found that the lipid content was positively related to the bulk muscle tissue C:N ratio. The two different lipid models produced similar estimates of lipid content based on tissue C:N, within 6% for tissue C:N values <7. Normalizing δ(13) C values using an arithmetic mass-balance equation based on either model yielded similar results, with a small bias (<1‰) compared with results based on chemical extraction. CONCLUSIONS: Among-species consistency in the relationship between fish muscle tissue C:N ratio and lipid content supports the application of arithmetic mass balance to normalize δ(13) C values for lipid content. The uncertainty associated with both lipid extraction quality and choice of model parameters constrains the achievable precision of normalized δ(13) C values to about ±1.0‰.


Assuntos
Isótopos de Carbono/análise , Peixes/metabolismo , Cadeia Alimentar , Lipídeos/química , Isótopos de Nitrogênio/análise , Animais , Metabolismo dos Lipídeos , Músculos/química , Músculos/metabolismo
4.
Sci Total Environ ; 304(1-3): 327-48, 2003 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-12663194

RESUMO

We investigated factors causing mercury (Hg) concentrations in northern pike to exceed the consumption advisory level (>500 ng/g) in some inland lakes of Isle Royale National Park. Using Hg-clean techniques, we collected water, zooplankton, macro invertebrates, and fishes in 1998 and 1999 from one advisory lake, Sargent Lake, for analysis of total mercury (Hg(T)) and methylmercury (MeHg). For comparison, samples were also collected from a non-advisory lake, Lake Richie. Concentrations of Hg(T) in northern pike were significantly higher in Sargent Lake (P<0.01). Counter to expectations, mean concentrations of both Hg(T) and MeHg in open water samples were slightly higher in Lake Richie. However, zooplankton in Sargent Lake contained higher average concentrations of Hg(T) and MeHg than in Lake Richie. Mercury concentrations in macro invertebrates were similar between lakes, but different between taxa. The two lakes exhibited similar Hg(T) concentrations in age-1 yellow perch and adult perch but concentrations in large adult perch (>160 mm) in Sargent Lake were twice the concentrations in Lake Richie. Analysis of stable isotopes (delta(13)C and delta(15)N) in biota showed that pike from the two lakes are positioned at the same trophic level (4.2 and 4.3), but that the food web is more pelagic-based in Sargent and benthic-based in Richie. Factors causing concentrations in large pike to be higher in Sargent Lake may include higher bioavailability of methylmercury and a food web that enhances bioaccumulation.


Assuntos
Cadeia Alimentar , Mercúrio/farmacocinética , Compostos de Metilmercúrio/farmacocinética , Percas , Animais , Disponibilidade Biológica , Constituição Corporal , Contaminação de Alimentos , Great Lakes Region , Invertebrados , Mercúrio/análise , Compostos de Metilmercúrio/análise , Zooplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA