Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Inflammation ; 47(1): 346-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831367

RESUMO

Infectious diseases are a significant burden in global healthcare. Pathogens engage with different host defense mechanisms. However, it is currently unknown if there are disease-specific immune signatures and/or if different pathogens elicit common immune-associated molecular entities to common therapeutic interventions. We studied patients enrolled through the Human Immunology Project Consortium (HIPC), which focuses on immune responses to various infections. Blood samples were collected and analyzed from patients during infection and follow-up time points at the convalescent stage. The study included samples from patients with Lyme disease (LD), tuberculosis (TB), malaria (MLA), dengue virus (DENV), and West Nile virus (WNV), as well as kidney transplant patients with cytomegalovirus (CMV) and polyomavirus (BKV) infections. Using an antibody-based assay, we quantified ~ 350 cell surface markers, cytokines, and chemokines involved in inflammation and immunity. Unique protein signatures were identified specific to the acute phase of infection irrespective of the pathogen type, with significant changes during convalescence. In addition, tumor necrosis factor receptor superfamily member 6 (TNR6), C-C Motif Chemokine Receptor 7 (CCR7), and C-C motif chemokine ligand-1 (CCL1) were increased in the acute and convalescent phases across all viral, bacterial, and protozoan compared to blood from healthy donors. Furthermore, despite the differences between pathogens, proteins were enriched in common biological pathways such as cell surface receptor signaling pathway and response to external stimulus. In conclusion, we demonstrated that irrespective of the pathogen type, there are common immunoregulatory and proinflammatory signals.


Assuntos
Proteoma , Vírus do Nilo Ocidental , Humanos , Inflamação , Citocinas , Transdução de Sinais/fisiologia
2.
Ann Transl Med ; 11(9): 315, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37404982

RESUMO

Background: Focal segmental glomerulosclerosis (FSGS) is frequently associated with heavy proteinuria and progressive renal failure requiring dialysis or kidney transplantation. However, primary FSGS also has a ~40% risk of recurrence of disease in the transplanted kidney (rFSGS). Multiple circulating factors have been identified to contribute to the pathogenesis of primary and rFSGS including soluble urokinase-type plasminogen activator receptor (suPAR) and patient-derived CD40 autoantibody (CD40autoAb). However, the downstream effector pathways specific to individual factors require further study. The tumor necrosis factor, TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS has been supported by multiple studies. Methods: A human in vitro model was used to study podocyte injury measured as the loss of actin stress fibers. Anti-CD40 autoantibody was isolated from FSGS patients (recurrent and non-recurrent) and control patients with ESRD due to non-FSGS related causes. Two novel human antibodies-anti-uPAR (2G10) and anti-CD40 antibody (Bristol Meyer Squibb, 986090) were tested for their ability to rescue podocyte injury. Podocytes treated with patient derived antibody were transcriptionally profiled using whole human genome microarray. Results: Here we show that podocyte injury caused by sera from FSGS patients is mediated by CD40 and suPAR and can be blocked by human anti-uPAR and anti-CD40 antibodies. Transcriptomic studies to compare the molecules and pathways activated in response to CD40 autoantibody from rFSGS patients (rFSGS/CD40autoAb) and suPAR, identified unique inflammatory pathways associated with FSGS injury. Conclusions: We identified several novel and previously described genes associated with FSGS progression. Targeted blockade of suPAR and CD40 pathways with novel human antibodies showed inhibition of podocyte injury in FSGS.

3.
Nat Commun ; 14(1): 4359, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468466

RESUMO

Rejection remains the main cause of premature graft loss after kidney transplantation, despite the use of potent immunosuppression. This highlights the need to better understand the composition and the cell-to-cell interactions of the alloreactive inflammatory infiltrate. Here, we performed droplet-based single-cell RNA sequencing of 35,152 transcriptomes from 16 kidney transplant biopsies with varying phenotypes and severities of rejection and without rejection, and identified cell-type specific gene expression signatures for deconvolution of bulk tissue. A specific association was identified between recipient-derived FCGR3A+ monocytes, FCGR3A+ NK cells and the severity of intragraft inflammation. Activated FCGR3A+ monocytes overexpressed CD47 and LILR genes and increased paracrine signaling pathways promoting T cell infiltration. FCGR3A+ NK cells overexpressed FCRL3, suggesting that antibody-dependent cytotoxicity is a central mechanism of NK-cell mediated graft injury. Multiplexed immunofluorescence using 38 markers on 18 independent biopsy slides confirmed this role of FcγRIII+ NK and FcγRIII+ nonclassical monocytes in antibody-mediated rejection, with specificity to the glomerular area. These results highlight the central involvement of innate immune cells in the pathogenesis of allograft rejection and identify several potential therapeutic targets that might improve allograft longevity.


Assuntos
Rejeição de Enxerto , Rim , Rim/patologia , Transplante Homólogo , Anticorpos , Aloenxertos , Imunidade Inata/genética
4.
PLoS One ; 18(5): e0285870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205661

RESUMO

BACKGROUND: Cytomegalovirus (CMV) infection, either de novo or as reactivation after allotransplantation and chronic immunosuppression, is recognized to cause detrimental alloimmune effects, inclusive of higher susceptibility to graft rejection and substantive impact on chronic graft injury and reduced transplant survival. To obtain further insights into the evolution and pathogenesis of CMV infection in an immunocompromised host we evaluated changes in the circulating host proteome serially, before and after transplantation, and during and after CMV DNA replication (DNAemia), as measured by quantitative polymerase chain reaction (QPCR). METHODS: LC-MS-based proteomics was conducted on 168 serially banked plasma samples, from 62 propensity score-matched kidney transplant recipients. Patients were stratified by CMV replication status into 31 with CMV DNAemia and 31 without CMV DNAemia. Patients had blood samples drawn at protocol times of 3- and 12-months post-transplant. Additionally, blood samples were also drawn before and 1 week and 1 month after detection of CMV DNAemia. Plasma proteins were analyzed using an LCMS 8060 triple quadrupole mass spectrometer. Further, public transcriptomic data on time matched PBMCs samples from the same patients was utilized to evaluate integrative pathways. Data analysis was conducted using R and Limma. RESULTS: Samples were segregated based on their proteomic profiles with respect to their CMV Dnaemia status. A subset of 17 plasma proteins was observed to predict the onset of CMV at 3 months post-transplant enriching platelet degranulation (FDR, 4.83E-06), acute inflammatory response (FDR, 0.0018), blood coagulation (FDR, 0.0018) pathways. An increase in many immune complex proteins were observed at CMV infection. Prior to DNAemia the plasma proteome showed changes in the anti-inflammatory adipokine vaspin (SERPINA12), copper binding protein ceruloplasmin (CP), complement activation (FDR = 0.03), and proteins enriched in the humoral (FDR = 0.01) and innate immune responses (FDR = 0.01). CONCLUSION: Plasma proteomic and transcriptional perturbations impacting humoral and innate immune pathways are observed during CMV infection and provide biomarkers for CMV disease prediction and resolution. Further studies to understand the clinical impact of these pathways can help in the formulation of different types and duration of anti-viral therapies for the management of CMV infection in the immunocompromised host.


Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Serpinas , Humanos , Transplante de Rim/efeitos adversos , Citomegalovirus/genética , Proteoma , Proteômica , DNA Viral/genética
5.
Front Immunol ; 13: 1012824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569838

RESUMO

Advancement in proteomics methods for interrogating biological samples has helped identify disease biomarkers for early diagnostics and unravel underlying molecular mechanisms of disease. Herein, we examined the serum proteomes of 23 study participants presenting with one of two common arthropod-borne infections: Lyme disease (LD), an extracellular bacterial infection or West Nile virus infection (WNV), an intracellular viral infection. The LC/MS based serum proteomes of samples collected at the time of diagnosis and during convalescence were assessed using a depletion-based high-throughput shotgun proteomics (dHSP) pipeline as well as a non-depleting blotting-based low-throughput platform (MStern). The LC/MS integrated analyses identified host proteome responses in the acute and recovery phases shared by LD and WNV infections, as well as differentially abundant proteins that were unique to each infection. Notably, we also detected proteins that distinguished localized from disseminated LD and asymptomatic from symptomatic WNV infection. The proteins detected in both diseases with the dHSP pipeline identified unique and overlapping proteins detected with the non-depleting MStern platform, supporting the utility of both detection methods. Machine learning confirmed the use of the serum proteome to distinguish the infection from healthy control sera but could not develop discriminatory models between LD and WNV at current sample numbers. Our study is the first to compare the serum proteomes in two arthropod-borne infections and highlights the similarities in host responses even though the pathogens and the vectors themselves are different.


Assuntos
Doença de Lyme , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Febre do Nilo Ocidental/diagnóstico , Vírus do Nilo Ocidental/fisiologia , Proteoma , Proteômica , Doença de Lyme/diagnóstico
6.
Front Immunol ; 13: 1012042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466928

RESUMO

In this cross-sectional and longitudinal analysis of mapping the T-cell repertoire in kidney transplant recipients, we have investigated and validated T-cell clonality, immune repertoire chronology at rejection, and contemporaneous allograft biopsy quantitative tissue injury, to better understand the pathobiology of acute T-cell fraction, T-cell repertoire and antibody-mediated kidney transplant rejection. To follow the dynamic evolution of T-cell repertoire changes before and after engraftment and during biopsy-confirmed acute rejection, we sequenced 323 peripheral blood samples from 200 unique kidney transplant recipients, with (n=100) and without (n=100) biopsy-confirmed acute rejection. We report that patients who develop acute allograft rejection, have lower (p=0.01) T-cell fraction even before transplantation, followed by its rise after transplantation and at the time of acute rejection accompanied by high TCR repertoire turnover (p=0.004). Acute rejection episodes occurring after the first 6 months post-transplantation, and those with a component of antibody-mediated rejection, had the highest turnover; p=0.0016) of their T-cell repertoire. In conclusion, we validated that detecting repertoire changes in kidney transplantation correlates with post-transplant rejection episodes suggesting that T-cell receptor sequencing may provide recipient pre-transplant and post-transplant predictors of rejection risk.


Assuntos
Transplante de Rim , Linfócitos T , Humanos , Transplante de Rim/efeitos adversos , Estudos Transversais , Complicações Pós-Operatórias , Biópsia , Anticorpos
7.
Sci Adv ; 8(23): eabn4965, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675394

RESUMO

Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.


Assuntos
Nefropatias , Rim , Humanos , Rim/patologia , Nefropatias/metabolismo , Metabolômica/métodos , Proteômica/métodos , Transcriptoma
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35181606

RESUMO

Cytomegalovirus (CMV) infection is associated with graft rejection in renal transplantation. Memory-like natural killer (NK) cells expressing NKG2C and lacking FcεRIγ are established during CMV infection. Additionally, CD8+ T cells expressing NKG2C have been observed in some CMV-seropositive patients. However, in vivo kinetics detailing the development and differentiation of these lymphocyte subsets during CMV infection remain limited. Here, we interrogated the in vivo kinetics of lymphocytes in CMV-infected renal transplant patients using longitudinal samples compared with those of nonviremic (NV) patients. Recipient CMV-seropositive (R+) patients had preexisting memory-like NK cells (NKG2C+CD57+FcεRIγ-) at baseline, which decreased in the periphery immediately after transplantation in both viremic and NV patients. We identified a subset of prememory-like NK cells (NKG2C+CD57+FcεRIγlow-dim) that increased during viremia in R+ viremic patients. These cells showed a higher cytotoxic profile than preexisting memory-like NK cells with transient up-regulation of FcεRIγ and Ki67 expression at the acute phase, with the subsequent accumulation of new memory-like NK cells at later phases of viremia. Furthermore, cytotoxic NKG2C+CD8+ T cells and γδ T cells significantly increased in viremic patients but not in NV patients. These three different cytotoxic cells combinatorially responded to viremia, showing a relatively early response in R+ viremic patients compared with recipient CMV-seronegative viremic patients. All viremic patients, except one, overcame viremia and did not experience graft rejection. These data provide insights into the in vivo dynamics and interplay of cytotoxic lymphocytes responding to CMV viremia, which are potentially linked with control of CMV viremia to prevent graft rejection.


Assuntos
Infecções por Citomegalovirus/imunologia , Citometria de Fluxo/métodos , Células Matadoras Naturais/metabolismo , Adulto , Linfócitos T CD8-Positivos/metabolismo , Separação Celular/métodos , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/virologia , Feminino , Rejeição de Enxerto/imunologia , Humanos , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Células Matadoras Naturais/imunologia , Cinética , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Análise de Célula Única/métodos , Viremia/imunologia , Viremia/virologia
9.
Am J Transplant ; 22(3): 876-885, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687145

RESUMO

Maintenance of systemic homeostasis by kidney requires the coordinated response of diverse cell types. The use of single-cell RNA sequencing (scRNAseq) for patient tissue samples remains fraught with difficulties with cell isolation, purity, and experimental bias. The ability to characterize immune and parenchymal cells during transplant rejection will be invaluable in defining transplant pathology where tissue availability is restricted to needle biopsy fragments. Herein, we present feasibility data for multiplexing approach for droplet scRNAseq (Mux-Seq). Mux-Seq has the potential to minimize experimental batch bias and variation even with very small sample input. In this first proof-of-concept study for this approach, explant tissues from six normal and two transplant recipients after multiple early post-transplant rejection episodes leading to nephrectomy due to aggressive antibody mediated rejection, were pooled for Mux-Seq. A computational tool, Demuxlet was applied for demultiplexing the individual cells from the pooled experiment. Each sample was also applied individually in a single microfluidic run (singleplex) to correlate results with the pooled data from the same sample. Our applied protocol demonstrated that data from Mux-Seq correlated highly with singleplex (Pearson coefficient 0.982) sequencing results, with the ability to identify many known and novel kidney cell types including different infiltrating immune cells. Trajectory analysis of proximal tubule and endothelial cells demonstrated separation between healthy and injured kidney from transplant explant suggesting evolving stages of cell- specific differentiation in alloimmune injury. This study provides the technical groundwork for understanding the pathogenesis of alloimmune injury and host tissue response in transplant rejection and normal human kidney and provides a protocol for optimized processing precious and low input human kidney biopsy tissue for larger scale studies.


Assuntos
Células Endoteliais , Transplante de Rim , Aloenxertos , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/genética , Humanos , Rim/patologia , Transplante de Rim/efeitos adversos
10.
Front Immunol ; 12: 769972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925339

RESUMO

Diabetic kidney disease (DKD) is a key microvascular complication of diabetes, with few therapies for targeting renal disease pathogenesis and progression. We performed transcriptional and protein studies on 103 unique blood and kidney tissue samples from patients with and without diabetes to understand the pathophysiology of DKD injury and its progression. The study was based on the use of 3 unique patient cohorts: peripheral blood mononuclear cell (PBMC) transcriptional studies were conducted on 30 patients with DKD with advancing kidney injury; Gene Expression Omnibus (GEO) data was downloaded, containing transcriptional measures from 51 microdissected glomerulous from patients with DKD. Additionally, 12 independent kidney tissue sections from patients with or without DKD were used for validation of target genes in diabetic kidney injury by kidney tissue immunohistochemistry and immunofluorescence. PBMC DKD transcriptional analysis, identified 853 genes (p < 0.05) with increasing expression with progression of albuminuria and kidney injury in patients with diabetes. GEO data was downloaded, normalized, and analyzed for significantly changed genes. Of the 325 significantly up regulated genes in DKD glomerulous (p < 0.05), 28 overlapped in PBMC and diabetic kidney, with perturbed FcER1 signaling as a significantly enriched canonical pathway. FcER1 was validated to be significantly increased in advanced DKD, where it was also seen to be specifically co-expressed in the kidney biopsy with tissue mast cells. In conclusion, we demonstrate how leveraging public and private human transcriptional datasets can discover and validate innate immunity and inflammation as key mechanistic pathways in DKD progression, and uncover FcER1 as a putative new DKD target for rational drug design.


Assuntos
Nefropatias Diabéticas/genética , Perfilação da Expressão Gênica/métodos , Rim/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores de IgE/genética , Transdução de Sinais/genética , Adulto , Idoso , Estudos de Coortes , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Feminino , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Receptores de IgE/metabolismo
11.
Front Med (Lausanne) ; 8: 548212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928097

RESUMO

Urine proteins can serve as viable biomarkers for diagnosing and monitoring various diseases. A comprehensive urine proteome database, generated from a variety of urine samples with different disease conditions, can serve as a reference resource for facilitating discovery of potential urine protein biomarkers. Herein, we present a urine proteome database generated from multiple datasets using 2D LC-MS/MS proteome profiling of urine samples from healthy individuals (HI), renal transplant patients with acute rejection (AR) and stable graft (STA), patients with non-specific proteinuria (NS), and patients with prostate cancer (PC). A total of ~28,000 unique peptides spanning ~2,200 unique proteins were identified with a false discovery rate of <0.5% at the protein level. Over one third of the annotated proteins were plasma membrane proteins and another one third were extracellular proteins according to gene ontology analysis. Ingenuity Pathway Analysis of these proteins revealed 349 potential biomarkers in the literature-curated database. Forty-three percentage of all known cluster of differentiation (CD) proteins were identified in the various human urine samples. Interestingly, following comparisons with five recently published urine proteome profiling studies, which applied similar approaches, there are still ~400 proteins which are unique to this current study. These may represent potential disease-associated proteins. Among them, several proteins such as serpin B3, renin receptor, and periostin have been reported as pathological markers for renal failure and prostate cancer, respectively. Taken together, our data should provide valuable information for future discovery and validation studies of urine protein biomarkers for various diseases.

12.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197228

RESUMO

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Assuntos
Guias como Assunto , Rim/patologia , Medicina de Precisão , Biópsia , Humanos , Reprodutibilidade dos Testes
13.
Kidney Int Rep ; 5(10): 1706-1721, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33102963

RESUMO

INTRODUCTION: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. METHODS: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell-mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. RESULTS: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. CONCLUSIONS: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process.

14.
Front Med (Lausanne) ; 7: 499, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072769

RESUMO

Molecular assessments at the single cell level can accelerate biological research by providing detailed assessments of cellular organization and tissue heterogeneity in both disease and health. The human kidney has complex multi-cellular states with varying functionality, much of which can now be completely harnessed with recent technological advances in tissue proteomics at a near single-cell level. We discuss the foundational steps in the first application of this mass spectrometry (MS) based proteomics method for analysis of sub-sections of the normal human kidney, as part of the Kidney Precision Medicine Project (KPMP). Using ~30-40 laser captured micro-dissected kidney cells, we identified more than 2,500 human proteins, with specificity to the proximal tubular (PT; n = 25 proteins) and glomerular (Glom; n = 67 proteins) regions of the kidney and their unique metabolic functions. This pilot study provides the roadmap for application of our near-single-cell proteomics workflow for analysis of other renal micro-compartments, on a larger scale, to unravel perturbations of renal sub-cellular function in the normal kidney as well as different etiologies of acute and chronic kidney disease.

15.
J Clin Med ; 9(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707952

RESUMO

Despite new advancements in surgical tools and therapies, exposure to immunosuppressive drugs related to non-immune and immune injuries can cause slow deterioration and premature failure of organ transplants. Diagnosis of these injuries by non-invasive urine monitoring would be a significant clinical advancement for patient management, especially in pediatric cohorts. We investigated the metabolomic profiles of biopsy matched urine samples from 310 unique kidney transplant recipients using gas chromatography-mass spectrometry (GC-MS). Focused metabolite panels were identified that could detect biopsy confirmed acute rejection with 92.9% sensitivity and 96.3% specificity (11 metabolites) and could differentiate BK viral nephritis (BKVN) from acute rejection with 88.9% sensitivity and 94.8% specificity (4 metabolites). Overall, targeted metabolomic analyses of biopsy-matched urine samples enabled the generation of refined metabolite panels that non-invasively detect graft injury phenotypes with high confidence. These urine biomarkers can be rapidly assessed for non-invasive diagnosis of specific transplant injuries, opening the window for precision transplant medicine.

16.
Am J Transplant ; 20(12): 3599-3608, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32558199

RESUMO

Immunosuppression devoid of corticosteroids has been investigated to avoid long-term comorbidities. Likewise, alternatives to calcineurin inhibitors have been investigated as a strategy to improve long-term kidney function following transplanion. Costimulatory blockade strategies that include corticosteroids have recently shown promise, despite their higher rates of early acute rejection. We designed a randomized clinical trial utilizing depletional induction therapy to mitigate early rejection risk while limiting calcineurin inhibitors and corticosteroids. This trial, Clinical Trials in Organ Transplantation 16 (CTOT-16), sought to evaluate novel belatacept-based strategies employing tacrolimus and corticosteroid avoidance. Sixty-nine kidney transplant recipients were randomized from 4 US transplant centers comparing a control group of with rabbit antithymocyte globulin (rATG) induction, rapid steroid taper, and maintenance mycophenolate and tacrolimus, to 2 arms using maintenance belatacept. There were no graft losses but there were 2 deaths in the control group. However, the trial was halted early because of rejection in the belatacept treatment groups. Serious adverse events were similar across groups. Although rejection was not uniform in the belatacept maintenance therapy groups, the frequency of rejection limits the practical implementation of this strategy to avoid both calcineurin inhibitors and corticosteroids at this time.


Assuntos
Transplante de Rim , Transplante de Órgãos , Abatacepte/uso terapêutico , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Imunossupressores/uso terapêutico , Esteroides
17.
Sci Transl Med ; 12(535)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188722

RESUMO

Accurate and noninvasive monitoring of renal allograft posttransplant is essential for early detection of acute rejection (AR) and to affect the long-term survival of the transplant. We present the development and validation of a noninvasive, spot urine-based diagnostic assay based on measurements of six urinary DNA, protein, and metabolic biomarkers. The performance of this assay for detecting kidney injury in both native kidneys and renal allografts is presented on a cohort of 601 distinct urine samples. The urinary composite score enables diagnosis of AR, with a receiver-operator characteristic curve area under the curve of 0.99 and an accuracy of 96%. In addition, we demonstrate the clinical utility of this assay for predicting AR before a rise in the serum creatinine, enabling earlier detection of rejection than currently possible by standard of care tests. This noninvasive, sensitive, and quantitative approach is a robust and informative method for the rapid and routine monitoring of renal allografts.


Assuntos
Transplante de Rim , Biomarcadores , Rejeição de Enxerto/diagnóstico , Humanos , Rim , Complicações Pós-Operatórias
19.
Front Immunol ; 11: 614343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613539

RESUMO

Long-term kidney transplant (KT) allograft outcomes have not improved as expected despite a better understanding of rejection and improved immunosuppression. Previous work had validated a computed rejection score, the tissue common rejection module (tCRM), measured by amplification-based assessment of 11 genes from formalin-fixed paraffin-embedded (FFPE) biopsy specimens, which allows for quantitative, unbiased assessment of immune injury. We applied tCRM in a prospective trial of 124 KT recipients, and contrasted assessment by tCRM and histology reads from 2 independent pathologists on protocol and cause biopsies post-transplant. Four 10-µm shaves from FFPE biopsy specimens were used for RNA extraction and amplification by qPCR of the 11 tCRM genes, from which the tCRM score was calculated. Biopsy diagnoses of either acute rejection (AR) or borderline rejection (BL) were considered to have inflammation present, while stable biopsies had no inflammation. Of the 77 biopsies that were read by both pathologists, a total of 40 mismatches in the diagnosis were present. The median tCRM scores for AR, BL, and stable diagnoses were 4.87, 1.85, and 1.27, respectively, with an overall significant difference among all histologic groups (Kruskal-Wallis, p < 0.0001). There were significant differences in tCRM scores between pathologists both finding inflammation vs. disagreement (p = 0.003), and both finding inflammation vs. both finding no inflammation (p < 0.001), along with overall significance between all scores (Kruskal-Wallis, p < 0.001). A logistic regression model predicting graft inflammation using various clinical predictor variables and tCRM revealed the tCRM score as the only significant predictor of graft inflammation (OR: 1.90, 95% CI: 1.40-2.68, p < 0.0001). Accurate, quantitative, and unbiased assessment of rejection of the clinical sample is critical. Given the discrepant diagnoses between pathologists on the same samples, individuals could utilize the tCRM score as a tiebreaker in unclear situations. We propose that the tCRM quantitative score can provide unbiased quantification of graft inflammation, and its rapid evaluation by PCR on the FFPE shave can become a critical adjunct to help drive clinical decision making and immunosuppression delivery.


Assuntos
Aloenxertos/imunologia , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/metabolismo , Terapia de Imunossupressão/métodos , Transplante de Rim , Biomarcadores/metabolismo , Biópsia , Feminino , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/genética , Transplante Homólogo
20.
Front Med (Lausanne) ; 6: 213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632976

RESUMO

Background: There is an urgent need to develop and implement low cost, high-throughput standardized methods for routine molecular assessment of transplant biopsies. Given the vast archive of formalin-fixed and paraffin-embedded (FFPE) tissue blocks in transplant centers, a reliable protocol for utilizing this tissue bank for clinical validation of target molecules as predictors of graft outcome over time, would be of great value. Methods: We designed and optimized assays to quantify 19 target genes, including previously reported set of tissue common rejection module (tCRM) genes. We interrogated their performance for their clinical utility for detection of graft rejection and inflammation by analyzing gene expression microarrays analysis of 163 renal allograft biopsies, and subsequently validated in 40 independent FFPE archived kidney transplant biopsies at a single center. Results: A QPCR (Fluidigm) and a barcoded oligo-based (NanoString) gene expression platform were compared for evaluation of amplification of gene expression signal for 19 genes from degraded RNA extracted from FFPE biopsy sections by a set protocol. Increased expression of the selected 19 genes, that reflect a combination of specific cellular infiltrates (8/19 genes) and a graft inflammation score (11/19 genes which computes the tCRM score allowed for segregation of kidney transplant biopsies with stable allograft function and normal histology from those with histologically confirmed acute rejection (AR; p = 0.0022, QPCR; p = 0.0036, barcoded assay) and many cases of histological borderline inflammation (BL). Serial biopsy shaves used for gene expression were also processed for in-situ hybridization (ISH) for a subset of genes. ISH confirmed a high degree of correlation of signal amplification and tissue localization. Conclusions: Target gene expression amplification across a custom set of genes can identify AR independent of histology, and quantify inflammation from archival kidney transplant biopsy tissue, providing a new tool for clinical correlation and outcome analysis of kidney allografts, without the need for prospective kidney biopsy biobanking efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...