Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ground Water ; 59(5): 677-693, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33655491

RESUMO

Particular attention is paid to the risk of carbon dioxide (CO2 ) leakage in geologic carbon sequestration (GCS) operations, as it might lead to the failure of sequestration efforts and to the contamination of underground sources of drinking water. As carbon dioxide would eventually reach shallower formations under its gaseous state, understanding its multiphase flow behavior is essential. To this aim, a hypothetical gaseous leak of carbon dioxide resulting from a well integrity failure of the GCS system in operation at Hellisheiði (CarbFix2) is here modeled. Simulations show that migration of gaseous carbon dioxide is largely affected by formation stratigraphy, intrinsic permeability, and retention properties, whereas the initial groundwater hydraulic gradient (0.0284) has practically no effect. In two different scenarios, about 18.3 and 30.6% of the CO2 that would have been injected by the GCS system for 3 days could be potentially released again into the atmosphere due to a sustained leakage of the same duration. As the gaseous leak occurs, the aquifer experiences high pressure buildups, and the presence of a less conductive layer further magnifies these. Strikingly, the dimensional analysis showed that buoyant and viscous forces can be comparable over time within the predicted gaseous plumes, even far from the leakage source. Local pressure gradients, buoyant, viscous, and capillary forces all play an important role during leakage. Therefore, neglecting one or more of these contributions might lead to a partial prediction of gaseous CO2 flow behavior in the subsurface, giving space to incorrect interpretations and wrong operational choices.


Assuntos
Água Subterrânea , Dióxido de Carbono , Sequestro de Carbono , Silicatos
3.
Nat Commun ; 10(1): 1983, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040283

RESUMO

The engineered removal of atmospheric CO2 is now considered a key component of mitigating climate warming below 1.5 °C. Mineral carbonation is a potential negative emissions technique that, in the case of Iceland's CarbFix experiment, precipitates dissolved CO2 as carbonate minerals in basaltic groundwater settings. Here we use calcium (Ca) isotopes in both pre- and post-CO2 injection waters to quantify the amount of carbonate precipitated, and hence CO2 stored. Ca isotope ratios rapidly increase with the pH and calcite saturation state, indicating calcite precipitation. Calculations suggest that up to 93% of dissolved Ca is removed into calcite during certain phases of injection. In total, our results suggest that 165 ± 8.3 t CO2 were precipitated into calcite, an overall carbon storage efficiency of 72 ± 5%. The success of this approach opens the potential for quantification of similar mineral carbonation efforts where drawdown rates cannot be estimated by other means.

4.
Science ; 352(6291): 1312-4, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27284192

RESUMO

Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2 This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated.

5.
Talanta ; 128: 466-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25059187

RESUMO

A method for the analysis of arsenic species in aqueous sulfide samples is presented. The method uses an ion chromatography system connected with a Hydride-Generation Atomic Fluorescence Spectrometer (IC-HG-AFS). With this method inorganic As(III) and As(V) species in water samples can be analyzed, including arsenite (HnAs(III)O3(n-3)), thioarsenite (HnAs(III)S3(n-3)), arsenate (HnAs(V)O4(n-3)), monothioarsenate (HnAs(V)SO3(n-3)), dithioarsenate (HnAs(V)S2O2(n-3)), trithioarsenate (HnAs(V)S3O(n-3)) and tetrathioarsenate (HnAs(V)S4(n-3)). The peak identification and retention times were determined based on standard analysis of the various arsenic compounds. The analytical detection limit was ~1-3 µg L(-1) (LOD), depending on the quality of the baseline. This low detection limit makes this method also applicable to discriminate between waters meeting the drinking water standard of max. 10 µg L(-1) As, and waters that do not meet this standard. The new method was successfully applied for on-site determination of arsenic species in natural sulfidic waters, in which seven species were unambiguously identified.


Assuntos
Arsênio/análise , Cromatografia/métodos , Fontes Termais/análise , Espectrometria de Fluorescência/métodos , Espectrofotometria Atômica/métodos , Sulfetos/análise , Arsenamida/análise , Arseniatos/análise , Arsenitos/análise , Calibragem , Fontes Termais/química , Íons , Reprodutibilidade dos Testes , Sulfetos/química , Abastecimento de Água/análise , Abastecimento de Água/normas
6.
Environ Sci Pollut Res Int ; 21(3): 1759-1768, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23979849

RESUMO

Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.


Assuntos
Bifenilos Policlorados/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Adsorção , Animais , Biodegradação Ambiental , Islândia , Oligoquetos/metabolismo , Bifenilos Policlorados/análise , Microbiologia do Solo , Poluentes do Solo/análise
7.
Environ Sci Technol ; 42(23): 8816-21, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19192803

RESUMO

The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.


Assuntos
Arsênio/química , Arsênio/isolamento & purificação , Vidro/química , Movimento (Física) , Silicatos/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Oxirredução , Solo , Propriedades de Superfície , Termodinâmica , Movimentos da Água
8.
Sci Total Environ ; 369(1-3): 203-19, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16678886

RESUMO

The carbon in soil pore water from a Histic Andosol from Western Iceland was studied at three different scales; in the field, in undisturbed outdoor mesocosms and in laboratory repacked microcosms. Pore water was extracted using suction cup lysimeters and hollow-fibre tube sampler devices (Rhizon samplers). There were significant differences in all measured variables, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and pH values between the scales of the experiment. Gaseous constituents of soil solution and pH were more susceptible to changes in scale and the type of sampling devices used. Dissolved inorganic carbon concentrations did not differ significantly between field and mesocosm solutions but where up to 14 times lower in microcosms compared to mesocosms solutions. Rhizon samplers yielded solutions with up to 4.7 times higher DIC concentrations than porous cup lysimeters. Mesocosm surface horizon DOC concentrations were 20 and 2 times higher than in field and microcosms respectively. There was difference in DOC concentration between sampling methods (up to 8 times higher in suction cups than rhizon samplers) above 50 cm depth. Soil solution pH values did not differ between field and mesocosms and mesocosms and microcosms respectively down to 80 cm depth. Direct comparison between field and microcosms was not possible due to the nature of sampling devices. Soil solutions sampled with Rhizon samplers yielded lower pH values (up to 1.3 pH units) than those sampled with suction cups. Twenty percent of annually bound organic carbon at the soils surface under field conditions was lost by leaching of DOC and through decomposition to DIC in disturbed non-vegetated microcosms. This percentage increased to 38% in undisturbed vegetated mesocosms highlighting the importance of surface vegetation in importing carbon to soils. Increased influx of nutrients will increase growth and photosynthesis but decrease carbon sequestration in near surface horizons. Although field studies considering long-term anthropogenic changes in pedogenesis require considerable experimental duration, more rapid experiments can be conducted with confidence in micro- and mesocosms as in this research.


Assuntos
Carbono/análise , Solo/análise , Alumínio/análise , Alumínio/química , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Islândia , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...