Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2312775121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324570

RESUMO

Self-assembly of complex and functional materials remains a grand challenge in soft material science. Efficient assembly depends on a delicate balance between thermodynamic and kinetic effects, requiring fine-tuning affinities and concentrations of subunits. By contrast, we introduce an assembly paradigm that allows large error-tolerance in the subunit affinity and helps avoid kinetic traps. Our combined experimental and computational approach uses a model system of triangular subunits programmed to assemble into T = 3 icosahedral capsids comprising 60 units. The experimental platform uses DNA origami to create monodisperse colloids whose three-dimensional geometry is controlled to nanometer precision, with two distinct bonds whose affinities are controlled to kBT precision, quantified in situ by static light scattering. The computational model uses a coarse-grained representation of subunits, short-ranged potentials, and Langevin dynamics. Experimental observations and modeling reveal that when the bond affinities are unequal, two distinct hierarchical assembly pathways occur, in which the subunits first form dimers in one case and pentamers in another. These hierarchical pathways produce complete capsids faster and are more robust against affinity variation than egalitarian pathways, in which all binding sites have equal strengths. This finding suggests that hierarchical assembly may be a general engineering principle for optimizing self-assembly of complex target structures.


Assuntos
Capsídeo , Ciência dos Materiais , Capsídeo/metabolismo , Proteínas do Capsídeo/química , DNA/química , Cinética , Termodinâmica , Montagem de Vírus , Ciência dos Materiais/métodos
2.
ACS Nano ; 16(12): 20002-20009, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36323320

RESUMO

Effective broadband antiviral platforms that can act on existing viruses and viruses yet to emerge are not available, creating a need to explore treatment strategies beyond the trodden paths. Here, we report virus-encapsulating DNA origami shells that achieve broadband virus trapping properties by exploiting avidity and a widespread background affinity of viruses to heparan sulfate proteoglycans (HSPG). With a calibrated density of heparin and heparan sulfate (HS) derivatives crafted to the interior of DNA origami shells, we could encapsulate adeno, adeno-associated, chikungunya, dengue, human papilloma, noro, polio, rubella, and SARS-CoV-2 viruses or virus-like particles, in one and the same HS-functionalized shell system. Additional virus-type-specific binders were not needed for the trapping. Depending on the relative dimensions of shell to virus particles, multiple virus particles may be trapped per shell, and multiple shells can cover the surface of clusters of virus particles. The steric occlusion provided by the heparan sulfate-coated DNA origami shells can prevent viruses from further interactions with receptors, possibly including those found on cell surfaces.


Assuntos
COVID-19 , Vírus , Humanos , SARS-CoV-2 , Heparitina Sulfato/metabolismo , Proteoglicanas de Heparan Sulfato , DNA
3.
Proc Natl Acad Sci U S A ; 119(43): e2207902119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252043

RESUMO

Self-assembly is one of the most promising strategies for making functional materials at the nanoscale, yet new design principles for making self-limiting architectures, rather than spatially unlimited periodic lattice structures, are needed. To address this challenge, we explore the tradeoffs between addressable assembly and self-closing assembly of a specific class of self-limiting structures: cylindrical tubules. We make triangular subunits using DNA origami that have specific, valence-limited interactions and designed binding angles, and we study their assembly into tubules that have a self-limited width that is much larger than the size of an individual subunit. In the simplest case, the tubules are assembled from a single component by geometrically programming the dihedral angles between neighboring subunits. We show that the tubules can reach many micrometers in length and that their average width can be prescribed through the dihedral angles. We find that there is a distribution in the width and the chirality of the tubules, which we rationalize by developing a model that considers the finite bending rigidity of the assembled structure as well as the mechanism of self-closure. Finally, we demonstrate that the distributions of tubules can be further sculpted by increasing the number of subunit species, thereby increasing the assembly complexity, and demonstrate that using two subunit species successfully reduces the number of available end states by half. These results help to shed light on the roles of assembly complexity and geometry in self-limited assembly and could be extended to other self-limiting architectures, such as shells, toroids, or triply periodic frameworks.


Assuntos
DNA , Nanoestruturas , Coloides/química , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
4.
Biospektrum (Heidelb) ; 28(2): 165-167, 2022.
Artigo em Alemão | MEDLINE | ID: mdl-35369111

RESUMO

The current pandemic has highlighted the need for new antiviral therapies, to respond to existing and emerging diseases transmitted by viral vectors. We developed a novel antiviral approach that is based on neutralizing viruses by trapping and encapsulation in artificial nano-shells. The surrounding shells prevent the interaction of viruses with host cells and thus interrupt an essential step in the lifecycle of most viruses.

5.
Nat Commun ; 13(1): 868, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165285

RESUMO

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.


Assuntos
COVID-19/imunologia , Ácidos Graxos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vírion/imunologia , Células A549 , Sítio Alostérico/genética , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação/genética , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Proteínas de Ligação a Ácido Graxo/imunologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Humanos , Células MCF-7 , Microscopia Confocal/métodos , Ligação Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
6.
J Am Chem Soc ; 143(51): 21630-21636, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34927433

RESUMO

Synthetic nanoscale devices that reconfigure dynamically in response to physiological stimuli could offer new avenues for diagnostics and therapy. Here, we report a strategy for controlling the state of DNA nanodevices based on sensing antigens with IgG antibodies. To this end, we use IgG antibodies as structural elements to kinetically trap reconfigurable DNA origami structures in metastable states. Addition of soluble antigens displace the IgGs from the objects and triggers reconfiguration. We demonstrate this mechanism by antigen-triggered disassembly of DNA origami shells for two different IgGs and their cognate antigens, and we determined the corresponding dose response curves. We also describe the logic-gated actuation of DNA objects with combinations of antigens, as demonstrated with AND-type shells that disassemble only when two different antigens are detected simultaneously. We apply our system for the antigen-triggered release of molecular payload as exemplified by the release of virus particles that we loaded into the DNA origami shells. We expect our approach to be applicable in many types of DNA nanostructures and with many other IgG-antigen combinations.


Assuntos
Antígenos/química , DNA/química , Nanoestruturas/química , Estrutura Molecular , Conformação de Ácido Nucleico
7.
Nat Mater ; 20(9): 1281-1289, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34127822

RESUMO

Broad-spectrum antiviral platforms that can decrease or inhibit viral infection would alleviate many threats to global public health. Nonetheless, effective technologies of this kind are still not available. Here, we describe a programmable icosahedral canvas for the self-assembly of icosahedral shells that have viral trapping and antiviral properties. Programmable triangular building blocks constructed from DNA assemble with high yield into various shell objects with user-defined geometries and apertures. We have created shells with molecular masses ranging from 43 to 925 MDa (8 to 180 subunits) and with internal cavity diameters of up to 280 nm. The shell interior can be functionalized with virus-specific moieties in a modular fashion. We demonstrate this virus-trapping concept by engulfing hepatitis B virus core particles and adeno-associated viruses. We demonstrate the inhibition of hepatitis B virus core interactions with surfaces in vitro and the neutralization of infectious adeno-associated viruses exposed to human cells.


Assuntos
DNA , Vírus da Hepatite B , Nanopartículas , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura
8.
Nature ; 552(7683): 78-83, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29219966

RESUMO

Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.


Assuntos
DNA/química , DNA/síntese química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Software , Sequência de Bases , Biopolímeros/química , Microscopia Crioeletrônica , DNA/ultraestrutura , Sistemas de Liberação de Medicamentos , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Organelas , Reprodutibilidade dos Testes , Alicerces Teciduais/química , Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...