Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(25): G154-G161, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613205

RESUMO

Thin-film geo-phase optics have the potential to dramatically reduce size, weight, and power for large-aperture optical components as well as provide nonmechanical functionality. Topics are presented in manner of increasing conceptual and system complexity to convey the different levels and aspects of system performance improvements. An 8'' aperture, lightweight geo-phase lens is presented followed by discussions on both mechanical and nonmechanical beam steering embodiments. Laser damage thresholds for the thin-film geo-phase prisms are reported. Highly efficient and spectrally broadband nonmechanical line-of-sight steering is also demonstrated. Lastly, novel fabrication techniques, to the best of our knowledge, and the associated reduced fabrication cost implications are presented.

2.
Biomed Res Int ; 2017: 6385628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130043

RESUMO

The major structural component of a blood clot is a meshwork of fibrin fibers. It has long been thought that the internal structure of fibrin fibers is homogeneous; that is, the protein density and the bond density between protofibrils are uniform and do not depend on fiber diameter. We performed experiments to investigate the internal structure of fibrin fibers. We formed fibrin fibers with fluorescently labeled fibrinogen and determined the light intensity of a fiber, I, as a function of fiber diameter, D. The intensity and, thus, the total number of fibrin molecules in a cross-section scaled as D1.4. This means that the protein density (fibrin per cross-sectional area), ρp , is not homogeneous but instead strongly decreases with fiber diameter as D-0.6. Thinner fibers are denser than thicker fibers. We also determined Young's modulus, Y, as a function of fiber diameter. Y decreased strongly with increasing D; Y scaled as D-1.5. This implies that the bond density, ρb , also scales as D-1.5. Thinner fibers are stiffer than thicker fibers. Our data suggest that fibrin fibers have a dense, well-connected core and a sparse, loosely connected periphery. In contrast, electrospun fibrinogen fibers, used as a control, have a homogeneous cross-section.


Assuntos
Fibrina/química , Adulto , Módulo de Elasticidade , Feminino , Fibrinogênio/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Masculino , Pessoa de Meia-Idade , Compostos de Quinolínio/química
3.
PLoS One ; 12(1): e0170414, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125613

RESUMO

The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSß) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14-24 µm2/s for EGFP and 3-7 µm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the onset of cancer.


Assuntos
Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Pareamento Incorreto de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Citoplasma/metabolismo , Reparo de Erro de Pareamento de DNA , Feminino , Humanos , Ligação Proteica , Transporte Proteico
4.
Biophys J ; 110(6): 1400-10, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028649

RESUMO

The major structural component of a blood clot is a mesh of fibrin fibers. Our goal was to determine whether fibrinogen glycation and fibrin fiber diameter have an effect on the mechanical properties of single fibrin fibers. We used a combined atomic force microscopy/fluorescence microscopy technique to determine the mechanical properties of individual fibrin fibers formed from blood plasma. Blood samples were taken from uncontrolled diabetic patients as well as age-, gender-, and body-mass-index-matched healthy individuals. The patients then underwent treatment to control blood glucose levels before end blood samples were taken. The fibrinogen glycation of the diabetic patients was reduced from 8.8 to 5.0 mol glucose/mol fibrinogen, and the healthy individuals had a mean fibrinogen glycation of 4.0 mol glucose/mol fibrinogen. We found that fibrinogen glycation had no significant systematic effect on single-fiber modulus, extensibility, or stress relaxation times. However, we did find that the fiber modulus, Y, strongly decreases with increasing fiber diameter, D, as Y∝D(-1.6). Thin fibers can be 100 times stiffer than thick fibers. This is unusual because the modulus is a material constant and should not depend on the sample dimensions (diameter) for homogeneous materials. Our finding, therefore, implies that fibrin fibers do not have a homogeneous cross section of uniformly connected protofibrils, as is commonly thought. Instead, the density of protofibril connections, ρPb, strongly decreases with increasing diameter, as ρPb∝D(-1.6). Thin fibers are denser and/or have more strongly connected protofibrils than thick fibers. This implies that it is easier to dissolve clots that consist of fewer thick fibers than those that consist of many thin fibers, which is consistent with experimental and clinical observations.


Assuntos
Fibrina/química , Fibrinogênio/química , Adulto , Idoso , Fenômenos Biomecânicos , Cristalografia por Raios X , Módulo de Elasticidade , Feminino , Glicosilação , Humanos , Pessoa de Meia-Idade , Substâncias Viscoelásticas
5.
Mater Sci Eng C Mater Biol Appl ; 32(2): 215-221, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22563143

RESUMO

Due to their low immunogenicity, biodegradability and native cell-binding domains, fibrinogen fibers may be good candidates for tissue engineering scaffolds, drug delivery vehicles and other medical devices. We used a combined atomic force microscope (AFM)/optical microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in dry, ambient conditions. The AFM was used to stretch individual fibers suspended over 13.5 µm wide grooves in a transparent substrate. The optical microscope, located below the sample, was used to monitor the stretching process. Electrospun fibrinogen fibers (diameter, 30-200 nm) can stretch to 74 % beyond their original length before rupturing at a stress of 2.1 GPa. They can stretch elastically up to 15 % beyond their original length. Using incremental stress-strain curves the viscoelastic behavior of these fibers was determined. The total stretch modulus was 4.2 GPa while the relaxed elastic modulus was 3.7 GPa. When held at constant strain, fibrinogen fibers display stress relaxation with a fast and slow relaxation time of 1.2 s and 11 s.In comparison to native and electrospun collagen fibers, dry electrospun fibrinogen fibers are significantly more extensible and elastic. In comparison to wet electrospun fibrinogen fibers, dry fibers are about 1000 times stiffer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...