Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol NMR ; 73(12): 699-712, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31606877

RESUMO

Paramagnetic relaxation enhancement (PRE) can be used to determine long-range distance restraints in biomolecules. The PREs are typically determined by analysis of intensity differences in HSQC experiments of paramagnetic and diamagnetic spin labels. However, this approach requires both isotope- and spin-labelling. Herein, we report a novel method to evaluate NOESY intensities in the presence of a paramagnetic moiety to determine PRE restraints. The advantage of our approach over HSQC-based approaches is the increased number of available signals without the need for isotope labelling. NOESY intensities affected by a paramagnetic center were evaluated during a structure calculation within the paramagnetic iterative relaxation matrix approach (P-IRMA). We applied P-IRMA to a 14-mer RNA with a known NMR solution structure, which allowed us to assess the quality of the PRE restraints. To this end, three different spin labels have been attached at different positions of the 14-mer to test the influence of flexibility on the structure calculation. Structural disturbances introduced by the spin label have been evaluated by chemical shift analysis. Furthermore, the impact of P-IRMA on the quality of the structure bundles were tested by intentionally leaving out available diamagnetic restraints. Our analyses show that P-IRMA is a powerful tool to refine RNA structures for systems that are insufficiently described by using only diamagnetic restraints.


Assuntos
Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , RNA/química , Espectroscopia de Ressonância de Spin Eletrônica , Conformação de Ácido Nucleico , Marcadores de Spin
2.
Phys Chem Chem Phys ; 19(44): 29801-29811, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29090294

RESUMO

Distance measurements are performed between a pair of spin labels attached to nucleic acids using Pulsed Electron-Electron Double Resonance (PELDOR, also called DEER) spectroscopy which is a complementary tool to other structure determination methods in structural biology. The rigid spin label Ç, when incorporated pairwise into two helical parts of a nucleic acid molecule, allows the determination of both the mutual orientation and the distance between those labels, since Ç moves rigidly with the helix to which it is attached. We have developed a two-step protocol to investigate the conformational flexibility of flexible nucleic acid molecules by multi-frequency PELDOR. In the first step, a library with a broad collection of conformers, which are in agreement with topological constraints, NMR restraints and distances derived from PELDOR, was created. In the second step, a weighted structural ensemble of these conformers was chosen, such that it fits the multi-frequency PELDOR time traces of all doubly Ç-labelled samples simultaneously. This ensemble reflects the global structure and the conformational flexibility of the two-way DNA junction. We demonstrate this approach on a flexible bent DNA molecule, consisting of two short helical parts with a five adenine bulge at the center. The kink and twist motions between both helical parts were quantitatively determined and showed high flexibility, in agreement with a Förster Resonance Energy Transfer (FRET) study on a similar bent DNA motif. The approach presented here should be useful to describe the relative orientation of helical motifs and the conformational flexibility of nucleic acid structures, both alone and in complexes with proteins and other molecules.

3.
J Biomol NMR ; 68(1): 53-63, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28500543

RESUMO

Paramagnetic relaxation enhancement (PRE) is a versatile tool for NMR spectroscopic structural and kinetic studies in biological macromolecules. Here, we compare the quality of PRE data derived from two spin labels with markedly different dynamic properties for large RNAs using the I-A riboswitch aptamer domain (78 nt) from Mesoplamsa florum as model system. We designed two I-A aptamer constructs that were spin-labeled by noncovalent hybridization of short spin-labeled oligomer fragments. As an example of a flexible spin label, UreidoU-TEMPO was incorporated into the 3' terminal end of helix P1 while, the recently developed rigid spin-label Çm was incorporated in the 5' terminal end of helix P1. We determined PRE rates obtained from aromatic 13C bound proton intensities and compared these rates to PREs derived from imino proton intensities in this sizeable RNA (~78 nt). PRE restraints derived from both imino and aromatic protons yielded similar data quality, and hence can both be reliably used for PRE determination. For NMR, the data quality derived from the rigid spin label Çm is slightly better than the data quality for the flexible UreidoTEMPO as judged by comparison of the structural agreement with the I-A aptamer crystal structure (3SKI).


Assuntos
Aptâmeros de Nucleotídeos , Ressonância Magnética Nuclear Biomolecular/métodos , Riboswitch , Marcadores de Spin , Óxidos N-Cíclicos , Maleabilidade , RNA
4.
Phys Chem Chem Phys ; 18(24): 16196-201, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27251584

RESUMO

Pulsed electron electron double resonance experiments with rigid spin labels can reveal very detailed information about the structure and conformational flexibility of nucleic acid molecules. On the other hand, the analysis of such data is more involved the distance and orientation information encoded in the time domain data need to be extracted and separated. In this respect studies with different spin labels with variable internal mobility are interesting and can help to unambiguously interpret the EPR data. Here orientation selective multi-frequency/multi-field 4-pulse PELDOR/DEER experiments with three recently presented semi-rigid or conformationally unambiguous isoindoline-derived spin labels were performed and simulated quantitatively by taking the spin label dynamics into account. PELDOR measurements were performed for a 20-mer dsDNA with two spin labels attached to two defined uridine derivatives. Measurements were recorded for different spin label positions within the double helical strand and for different magnetic field strengths. The experimental data sets were compared with simulations, taking into account the previously described dsDNA dynamics and the internal motions of the spin label itself, which had shown distinct differences between the three spin labels used. The (ExIm)U spin label shows a free rotation around a single bond, which averages out orientation effects, without influencing the distance distribution as it can occur in other spin labels. The (Im)U and (Ox)U spin label, on the other hand, show distinct orientation behaviour with minimal intrinsic motion. We could quantitatively determine this internal motion and demonstrate that the conformational dynamics of the nucleic acid and the spin label can be well separated by this approach.


Assuntos
Óxidos N-Cíclicos/química , DNA/química , Isoindóis/química , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Conformação de Ácido Nucleico , Uridina/análogos & derivados , Uridina/química
5.
Phys Chem Chem Phys ; 18(4): 2993-3002, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26740459

RESUMO

The cocaine aptamer is a DNA three-way junction that binds cocaine at its helical junction. We studied the global conformation and overall flexibility of the aptamer in the absence and presence of cocaine by pulsed electron-electron double resonance (PELDOR) spectroscopy, also called double electron-electron resonance (DEER). The rigid nitroxide spin label Ç was incorporated pairwise into two helices of the aptamer. Multi-frequency 2D PELDOR experiments allow the determination of the mutual orientation and the distances between two Çs. Since Ç is rigidly attached to double-stranded DNA, it directly reports on the aptamer dynamics. The cocaine-bound and the non-bound states could be differentiated by their conformational flexibility, which decreases upon binding to cocaine. We observed a small change in the width and mean value of the distance distribution between the two spin labels upon cocaine binding. Further structural insights were obtained by investigating the relative orientation between the two spin-labeled stems of the aptamer. We determined the bend angle between this two stems. By combining the orientation information with a priori knowledge about the secondary structure of the aptamer, we obtained a molecular model describing the global folding and flexibility of the cocaine aptamer.


Assuntos
Aptâmeros de Nucleotídeos/química , Cocaína/genética , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Conformação de Ácido Nucleico
6.
Methods Enzymol ; 564: 403-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26477259

RESUMO

Pulsed electron paramagnetic resonance (EPR) spectroscopy has become an important tool for structural characterization of biomolecules allowing measurement of the distances between two paramagnetic spin labels attached to a biomolecule in the 2-8 nm range. In this chapter, we will focus on applications of this approach to investigate tertiary structure elements as well as conformational dynamics of nucleic acid molecules. Both aspects take advantage of using specific spin labels that are rigidly attached to the nucleobases, as they allow obtaining not only the distance but also the relative orientation between both nitroxide moieties with high accuracy. Thus, not only the distance but additionally the three Euler angles between both the nitroxide axis systems and the two polar angles of the interconnecting vector with respect to the nitroxide axis systems can be extracted from a single pair of spin labels. To extract all these parameters independently and unambiguously, a set of multifrequency/multifield pulsed EPR experiments have to be performed. We will describe the experimental procedure as well as newly developed spin labels, which are helpful to disentangle all these parameters, and tools which we have developed to analyze such data sets. The procedures and analyses will be illustrated by examples from our laboratory.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ácidos Nucleicos/química , Algoritmos , Modelos Moleculares , Conformação de Ácido Nucleico , Marcadores de Spin
7.
Phys Chem Chem Phys ; 17(37): 24446-51, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26339694

RESUMO

Pulsed electron paramagnetic resonance (EPR) spectroscopy is a valuable technique for the precise determination of distances between paramagnetic spin labels that are covalently attached to macromolecules. Nitroxides have commonly been utilised as paramagnetic tags for biomolecules, but trityl radicals have recently been developed as alternative spin labels. Trityls exhibit longer electron spin relaxation times and higher stability than nitroxides under in vivo conditions. So far, trityl radicals have only been used in pulsed EPR dipolar spectroscopy (PDS) at X-band (9.5 GHz), Ku-band (17.2 GHz) and Q-band (34 GHz) frequencies. In this study we investigated a trityl biradical by PDS at Q-band (34 GHz) and G-band (180 GHz) frequencies. Due to the small spectral width of the trityl (30 MHz) at Q-band frequencies, single frequency PDS techniques, like double-quantum coherence (DQC) and single frequency technique for refocusing dipolar couplings (SIFTER), work very efficiently. Hence, Q-band DQC and SIFTER experiments were performed and the results were compared; yielding a signal to noise ratio for SIFTER four times higher than that for DQC. At G-band frequencies the resolved axially symmetric g-tensor anisotropy of the trityl exhibited a spectral width of 130 MHz. Thus, pulsed electron electron double resonance (PELDOR/DEER) obtained at different pump-probe positions across the spectrum was used to reveal distances. Such a multi-frequency approach should also be applicable to determine structural information on biological macromolecules tagged with trityl spin labels.

8.
J Magn Reson ; 252: 187-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25701439

RESUMO

Nucleic acid molecules can adopt a variety of structures and exhibit a large degree of conformational flexibility to fulfill their various functions in cells. Here we describe the use of Pulsed Electron-Electron Double Resonance (PELDOR or DEER) to investigate nucleic acid molecules where two cytosine analogs have been incorporated as spin probes. Because these new types of spin labels are rigid and incorporated into double stranded DNA and RNA molecules, there is no additional flexibility of the spin label itself present. Therefore the magnetic dipole-dipole interaction between both spin labels encodes for the distance as well as for the mutual orientation between the spin labels. All of this information can be extracted by multi-frequency/multi-field PELDOR experiments, which gives very precise and valuable information about the structure and conformational flexibility of the nucleic acid molecules. We describe in detail our procedure to obtain the conformational ensembles and show the accuracy and limitations with test examples and application to double-stranded DNA.


Assuntos
DNA/química , DNA/ultraestrutura , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Químicos , Modelos Moleculares , Conformação de Ácido Nucleico , Algoritmos , Simulação por Computador , Marcadores de Spin
9.
Free Radic Res ; 49(1): 78-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348344

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy is a powerful and widely used technique for studying structure and dynamics of biomolecules under bio-orthogonal conditions. In-cell EPR is an emerging area in this field; however, it is hampered by the reducing environment present in cells, which reduces most nitroxide spin labels to their corresponding diamagnetic N-hydroxyl derivatives. To determine which radicals are best suited for in-cell EPR studies, we systematically studied the effects of substitution on radical stability using five different classes of radicals, specifically piperidine-, imidazolidine-, pyrrolidine-, and isoindoline-based nitroxides as well as the Finland trityl radical. Thermodynamic parameters of nitroxide reduction were determined by cyclic voltammetry; the rate of reduction in the presence of ascorbate, cellular extracts, and after injection into oocytes was measured by continuous-wave EPR spectroscopy. Our study revealed that tetraethyl-substituted nitroxides are good candidates for in-cell EPR studies, in particular pyrrolidine derivatives, which are slightly more stable than the trityl radical.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/química , Marcadores de Spin , Oxirredução , Estereoisomerismo
10.
Phys Chem Chem Phys ; 11(31): 6708-14, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19639144

RESUMO

Pulsed electron electron double resonance (PELDOR) is a well-established method for measuring nanometer distances between paramagnetic centres. Here, we demonstrate on three rigid and conjugated biradicals how the presence of an exchange coupling constant J and its distribtion DeltaJ influences PELDOR data and its analysis. In principle two combinations of J and D fulfill the experimental data in each case. The correct one, including the sign of J, can be determined via simulations in case the two halves of the Pake pattern are separated enough.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...