Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 20(1): 2330768, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38517203

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.


Assuntos
Infecções por Chlamydia , Vacinas , Feminino , Animais , Camundongos , Chlamydia trachomatis , Linfócitos T CD8-Positivos , Antígenos de Bactérias , Salmonella , Imunidade , Vacinas Bacterianas , Infecções por Chlamydia/prevenção & controle , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa
2.
PLoS One ; 18(11): e0292757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939066

RESUMO

Macrophages can reversibly polarize into multiple functional subsets depending on their micro-environment. Identification and understanding the functionality of these subsets is relevant for the study of immune­related diseases. However, knowledge about canine macrophage polarization is still in its infancy. In this study, we polarized canine monocytes using GM-CSF/IFN- γ and LPS towards M1 macrophages or M-CSF and IL-4 towards M2 macrophages and compared them to undifferentiated monocytes (M0). Polarized M1 and M2 macrophages were thoroughly characterized for morphology, surface marker features, gene profiles and functional properties. Our results showed that canine M1-polarized macrophages obtained a characteristic large, roundish, or amoeboid shape, while M2-polarized macrophages were smaller and adopted an elongated spindle-like morphology. Phenotypically, all macrophage subsets expressed the pan-macrophage markers CD14 and CD11b. M1-polarized macrophages expressed increased levels of CD40, CD80 CD86 and MHC II, while a significant increase in the expression levels of CD206, CD209, and CD163 was observed in M2-polarized macrophages. RNAseq of the three macrophage subsets showed distinct gene expression profiles, which are closely associated with immune responsiveness, cell differentiation and phagocytosis. However, the complexity of the gene expression patterns makes it difficult to assign clear new polarization markers. Functionally, undifferentiated -monocytes, and M1- and M2- like subsets of canine macrophages can all phagocytose latex beads. M2-polarized macrophages exhibited the strongest phagocytic capacity compared to undifferentiated monocytes- and M1-polarized cells. Taken together, this study showed that canine M1 and M2-like macrophages have distinct features largely in parallel to those of well-studied species, such as human, mouse and pig. These findings enable future use of monocyte derived polarized macrophages particularly in studies of immune related diseases in dogs.


Assuntos
Macrófagos , Monócitos , Animais , Cães , Diferenciação Celular , Macrófagos/metabolismo , Monócitos/metabolismo , Fagocitose
3.
Cancer Res Commun ; 3(1): 109-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968226

RESUMO

In the last decades, antibody-based tumor therapy has fundamentally improved the efficacy of treatment for patients with cancer. Currently, almost all tumor antigen-targeting antibodies approved for clinical application are of IgG1 Fc isotype. Similarly, the mouse homolog mIgG2a is the most commonly used in tumor mouse models. However, in mice, the efficacy of antibody-based tumor therapy is largely restricted to a prophylactic application. Direct isotype comparison studies in mice in a therapeutic setting are scarce. In this study, we assessed the efficacy of mouse tumor-targeting antibodies of different isotypes in a therapeutic setting using a highly systematic approach. To this end, we engineered and expressed antibodies of the same specificity but different isotypes, targeting the artificial tumor antigen CD90.1/Thy1.1 expressed by B16 melanoma cells. Our experiments revealed that in a therapeutic setting mIgG2a was superior to both mIgE and mIgG1 in controlling tumor growth. Furthermore, the observed mIgG2a antitumor effect was entirely Fc mediated as the protection was lost when an Fc-silenced mIgG2a isotype (LALA-PG mutations) was used. These data confirm mIgG2a superiority in a therapeutic tumor model. Significance: Direct comparisons of different antibody isotypes of the same specificity in cancer settings are still scarce. Here, it is shown that mIgG2a has a greater effect compared with mIgG1 and mIgE in controlling tumor growth in a therapeutic setting.


Assuntos
Imunoglobulina G , Neoplasias , Animais , Camundongos , Receptores Fc , Neoplasias/terapia , Antígenos de Neoplasias
4.
Biomolecules ; 12(10)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291540

RESUMO

T cell engager (TCE) antibodies have emerged as promising cancer therapeutics that link cytotoxic T-cells to tumor cells by simultaneously binding to CD3E on T-cells and to a tumor-associated antigen (TAA) expressed by tumor cells. We previously reported a novel bispecific format, the IgG-like Fab x sdAb-Fc (also known as half-IG_VH-h-CH2-CH3), combining a conventional antigen-binding fragment (Fab) with a single domain antibody (sdAb). Here, we evaluated this Fab x sdAb-Fc format as a T-cell redirecting bispecific antibody (TbsAbs) by targeting mEGFR on tumor cells and mCD3E on T cells. We focused our attention specifically on the hinge design of the sdAb arm of the bispecific antibody. Our data show that a TbsAb with a shorter hinge of 23 amino acids (TbsAb.short) showed a significantly better T cell redirected tumor cell elimination than the TbsAb with a longer, classical antibody hinge of 39 amino acids (TbsAb.long). Moreover, the TbsAb.short form mediated better T cell-tumor cell aggregation and increased CD69 and CD25 expression levels on T cells more than the TbsAb.long form. Taken together, our results indicate that already minor changes in the hinge design of TbsAbs can have significant impact on the anti-tumor activity of TbsAbs and may provide a new means to improve their potency.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Anticorpos de Domínio Único , Humanos , Anticorpos Biespecíficos/química , Neoplasias/terapia , Imunoglobulina G , Aminoácidos , Morte Celular
5.
Cells ; 10(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943869

RESUMO

Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome' functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.


Assuntos
Alergia e Imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Apresentação de Antígeno/imunologia , Humanos , Imunidade , Inflamação/imunologia , Inflamação/patologia , Linfócitos T/imunologia
6.
J Immunol Methods ; 499: 113173, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34699840

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models. Here, we describe the generation, production, purification, and characterization of a panel of novel antibodies targeting mouse TNFR2. The antibodies display functional differences in binding affinity and potency to block TNFα. Furthermore, epitope binding showed that the anti-mTNFR2 antibodies target different domains on the TNFR2 protein, associated with varying capacity to enhance CD8+ T-cell activation and costimulation. Moreover, the anti-TNFR2 antibodies demonstrate binding to isolated splenic mouse Tregs ex vivo and activated CD8+ cells, reinforcing their potential use to establish TNFR2-dependent immune modulation in translational models of autoimmunity and cancer.


Assuntos
Anticorpos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Animais , Células CHO , Cricetulus , Feminino , Camundongos , Ratos , Ratos Sprague-Dawley
7.
J Extracell Vesicles ; 10(5): e12071, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33732416

RESUMO

Maternal milk is nature's first functional food. It plays a crucial role in the development of the infant's gastrointestinal (GI) tract and the immune system. Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer enclosed vesicles released by cells for intercellular communication and are a component of milk. Recently, we discovered that human milk EVs contain a unique proteome compared to other milk components. Here, we show that physiological concentrations of milk EVs support epithelial barrier function by increasing cell migration via the p38 MAPK pathway. Additionally, milk EVs inhibit agonist-induced activation of endosomal Toll like receptors TLR3 and TLR9. Furthermore, milk EVs directly inhibit activation of CD4+ T cells by temporarily suppressing T cell activation without inducing tolerance. We show that milk EV proteins target key hotspots of signalling networks that can modulate cellular processes in various cell types of the GI tract.


Assuntos
Vesículas Extracelulares/metabolismo , Sistema de Sinalização das MAP Quinases , Leite Humano/citologia , Mucosa Bucal/fisiologia , Adulto , Linhagem Celular , Vesículas Extracelulares/imunologia , Feminino , Humanos , Mucosa Bucal/imunologia , Linfócitos T/imunologia , Receptor 3 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Cancer Res Clin Oncol ; 146(12): 3111-3122, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32989604

RESUMO

PURPOSE: Bispecific antibodies (BsAbs) have emerged as a leading drug class for cancer therapy and are becoming increasingly of interest for therapeutic applications. As of April 2020, over 123 BsAbs are under clinical evaluation for use in oncology (including the two marketed BsAbs Blinatumomab and Catumaxomab). The majority (82 of 123) of BsAbs under clinical evaluation can be categorized as bispecific immune cell engager whereas a second less well-discussed subclass of BsAbs targets two tumor-associated antigens (TAAs). In this review, we summarize the clinical development of dual TAAs targeting BsAbs and provide an overview of critical considerations when designing dual TAA targeting BsAbs. METHODS: Herein the relevant literature and clinical trials published in English until April 1st 2020 were searched using PubMed and ClinicalTrials.gov database. BsAbs were considered to be active in clinic if their clinical trials were not terminated, withdrawn or completed before 2018 without reporting results. Data missed by searching ClinicalTrials.gov was manually curated. RESULTS: Dual TAAs targeting BsAbs offer several advantages including increased tumor selectivity, potential to concurrently modulate two functional pathways in the tumor cell and may yield improved payload delivery. CONCLUSIONS: Dual TAAs targeting BsAbs represent a valuable class of biologics and early stage clinical studies have demonstrated promising anti-tumor efficacy in both hematologic malignancies and solid tumors.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígenos de Neoplasias/imunologia , Neoplasias/terapia , Anticorpos Biespecíficos/imunologia , Antígenos de Neoplasias/efeitos dos fármacos , Humanos , Neoplasias/imunologia , Neoplasias/patologia
9.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899721

RESUMO

The pathogenesis of many inflammatory diseases is associated with the uncontrolled activation of nuclear factor kappa B (NF-κB) in macrophages. Previous studies have shown that in various cell types, heat shock protein 70 (Hsp70) plays a crucial role in controlling NF-κB activity. So far, little is known about the role of Hsp70 in canine inflammatory processes. In this study we investigated the potential anti-inflammatory effects of Hsp70 in canine macrophages as well as the mechanisms underlying these effects. To this end, a canine macrophage cell line was stressed with arsenite, a chemical stressor, which upregulated Hsp70 expression as detected by flow cytometry and qPCR. A gene-edited version of this macrophage cell line lacking inducible Hsp70 was generated using CRISPR-Cas9 technology. To determine the effects of Hsp70 on macrophage inflammatory properties, arsenite-stressed wild-type and Hsp70 knockout macrophages were exposed to lipopolysaccharide (LPS), and the expression of the inflammatory cytokines IL-6, IL-1ß and tumor necrosis factor-α (TNF-α) and levels of phosphorylated NF-κB were determined by qPCR and Western Blotting, respectively. Our results show that non-toxic concentrations of arsenite induced Hsp70 expression in canine macrophages; Hsp70 upregulation significantly inhibited the LPS-induced expression of the pro-inflammatory mediators TNF-α and IL-6, as well as NF-κB activation in canine macrophages. Furthermore, the gene editing of inducible Hsp70 by CRISPR-Cas9-mediated gene editing neutralized this inhibitory effect of cell stress on NF-κB activation and pro-inflammatory cytokine expression. Collectively, our study reveals that Hsp70 may regulate inflammatory responses through NF-κB activation and cytokine expression in canine macrophages.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Animais , Arsenitos/farmacologia , Linhagem Celular , Citocinas/metabolismo , Cães , Proteínas de Choque Térmico HSP70/imunologia , Proteínas I-kappa B/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/imunologia , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
10.
J Immunol Methods ; 483: 112811, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32569598

RESUMO

Due to the technical innovations in generating bispecific antibodies (BsAbs) in recent years, BsAbs have become important reagents for diagnostic and therapeutic applications. However, the difficulty of producing a heterodimer consisting of two different arms with high yield and purity constituted a major limitation for their application in academic and clinical settings. Here, we describe a novel Fc-containing BsAb format (Fab × sdAb-Fc) composed of a conventional antigen-binding fragment (Fab), and a single domain antibody (sdAb), which avoids heavy-light chain mis-pairing during antibody assembly. In this study, the Fab x sdAb-Fc BsAbs were efficiently produced by three widely used heavy-heavy chain heterodimerization methods: Knobs-into-holes (KIH), Charge-pairs (CP) and controlled Fab-arm exchange (cFAE), respectively. The novel Fab x sdAb-Fc format provided a rapid and efficient strategy to generate BsAb with high purity and a unique possibility to further purify desired BsAbs from undesired antibodies based on molecular weight (MW). Compared to conventional BsAb formats, the advantages of Fab x sdAb-Fc format may thus provide a straightforward opportunity to apply bispecific antibody principles to research and development of novel targets and pathways in diseases such as cancer and autoimmunity.


Assuntos
Anticorpos Biespecíficos/imunologia , Receptores ErbB/imunologia , Glutamato Carboxipeptidase II/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Glicoproteínas de Membrana/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/genética , Especificidade de Anticorpos , Células CHO , Cricetulus , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Peso Molecular , Mutação , Estudo de Prova de Conceito , Multimerização Proteica , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/genética
11.
Cell Stress Chaperones ; 25(2): 235-243, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31940135

RESUMO

Dysregulation of retinal pigment epithelium (RPE) cells is the main cause of a variety of ocular diseases. Potentially heat shock proteins, by preventing molecular and cellular damage and modulating inflammatory disease, may exert a protective role in eye disease. In particular, the inducible form of heat shock protein 70 (Hsp70) is widely upregulated in inflamed tissues, and in vivo upregulation of Hsp70 expression by HSP co-inducing compounds has been shown to be a potential therapeutic strategy for inflammatory diseases. In order to gain further understanding of the potential protective effects of Hsp70 in RPE cells, we developed a method for isolation and culture of canine RPE cells. Identity of RPE cells was confirmed by detection of its specific marker, RPE65, in qPCR, flow cytometry, and immunocytochemistry analysis. The ability of RPE cells to express Hsp70 upon experimental induction of cell stress, by arsenite, was analyzed by flow cytometry. Finally, in search of a potential Hsp70 co-inducer, we investigated whether the compound leucinostatin could enhance Hsp70 expression in stressed RPE cells. Canine RPE cells were isolated and cultured successfully. Purity of cells that strongly expressed RPE65 was over 90%. Arsenite-induced stress led to a time- and dose-dependent increase in Hsp70 expression in canine RPE cells in vitro. In addition, leucinostatin, which enhanced heat shock factor-1-induced transcription from the heat shock promoter in DNAJB1-luc-O23 reporter cell line, also enhanced Hsp70 expression in arsenite-stressed RPE cells, in a dose-dependent fashion. These findings demonstrate that leucinostatin can boost Hsp70 expression in canine RPE cells, most likely by activating heat shock factor-1, suggesting that leucinostatin might be applied as a new co-inducer for Hsp70 expression.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Epiteliais/citologia , Proteínas de Choque Térmico HSP70/metabolismo , Epitélio Pigmentado da Retina/citologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Células Cultivadas , Cães
12.
Mol Ther Nucleic Acids ; 11: 159-169, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858051

RESUMO

Therapeutics based on small interfering RNA (siRNA) have promising potential as antiviral and anti-inflammatory agents. To deliver siRNA across cell membranes to reach the RNAi pathway in the cytosol of target cells, non-viral nanoparticulate delivery approaches are explored. Recently, we showed that encapsulation of siRNA in lipid-polymer hybrid nanoparticles (LPNs), based on poly(DL-lactic-co-glycolic acid) (PLGA) and cationic lipid-like materials (lipidoids), remarkably enhances intracellular delivery of siRNA as compared to siRNA delivery with LPNs modified with dioleoyltrimethylammoniumpropane (DOTAP) as the lipid component. However, the potential immune modulation by these cationic lipids remains unexplored. By testing lipidoids and DOTAP for innate immune-receptor-activating properties in vitro, we found that neither lipidoids nor DOTAP activate human Toll-like receptor (TLR) 2, 3, 7, and 9. However, in contrast to DOTAP, lipidoids are strong agonists for TLR4 and activate murine antigen-presenting cells in vitro. This agonistic effect was further confirmed in silico using a prediction model based on crystal structures. Also, lipidoids formulated as lipoplexes or as stable nucleic acid lipid particles, which was the reference formulation for siRNA delivery, proved to activate TLR4. However, by combining lipidoids with PLGA into LPNs, TLR4 activation was abrogated. Thus, lipidoid-mediated TLR4 activation during siRNA delivery may be modulated via optimization of the formulation design.

13.
Front Immunol ; 8: 1441, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163514

RESUMO

Efficient and safe induction of CD8+ T cell responses is a desired characteristic of vaccines against intracellular pathogens. To achieve this, a new generation of safe vaccines is being developed accommodating single, dominant antigens of pathogens of interest. In particular, the selection of such antigens is challenging, since due to HLA polymorphism the ligand specificities and immunodominance hierarchies of pathogen-specific CD8+ T cell responses differ throughout the human population. A recently discovered mechanism of proteasome-mediated CD8+ T cell epitope generation, i.e., by proteasome-catalyzed peptide splicing (PCPS), expands the pool of peptides and antigens, presented by MHC class I HLA molecules. On the cell surface, one-third of the presented self-peptides are generated by PCPS, which coincides with one-fourth in terms of abundance. Spliced epitopes are targeted by CD8+ T cell responses during infection and, like non-spliced epitopes, can be identified within antigen sequences using a novel in silico strategy. The existence of spliced epitopes, by enlarging the pool of peptides available for presentation by different HLA variants, opens new opportunities for immunotherapies and vaccine design.

14.
Vaccine ; 35(50): 7057-7063, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29079107

RESUMO

The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8+ T cell activation following dermal DNA tattoo immunization, exploiting a model antigen that contains an immunoproteasome-dependent epitope. In agreement with earlier reports, we found that DNA tattoo immunization of wild type (WT) mice triggered vigorous responses to the immunoproteasome-dependent model epitope, whereas gene-deficient mice lacking the immunoproteasome subunits ß5i/LMP7 and ß2i/MECL1 failed to respond. Unexpectedly, dermal immunization both of irradiated bone marrow (BM) reconstituted mice in which the BM transplant was of WT origin, and of WT mice transplanted with immunoproteasome subunit-deficient BM induced a CD8+ T cell response to the immunoproteasome-dependent epitope, implying that both BM and host-derived cells contributed to processing of delivered model antigen. Depletion of radiation-resistant Langerhans cells (LC) from chimeric mice did not diminish tattoo-immunization induced CD8+ T cell responses in most mice, illustrating that LC were not responsible for antigen processing and CD8+ T cell priming in tattoo-immunized hosts. We conclude that both BM and non-BM-derived cells contribute to processing and cross-presentation of antigens delivered by dermal DNA tattoo immunization.


Assuntos
Apresentação de Antígeno , Injeções Intradérmicas , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos Endogâmicos C57BL , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
15.
J Control Release ; 266: 27-35, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28917531

RESUMO

The skin is an attractive organ for immunization due to the presence of a large number of epidermal and dermal antigen-presenting cells. Hollow microneedles allow for precise and non-invasive intradermal delivery of vaccines. In this study, ovalbumin (OVA)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles with and without TLR3 agonist poly(I:C) were prepared and administered intradermally by hollow microneedles. The capacity of the PLGA nanoparticles to induce a cytotoxic T cell response, contributing to protection against intracellular pathogens, was examined. We show that a single injection of OVA-loaded PLGA nanoparticles, compared to soluble OVA, primed both adoptively transferred antigen-specific naïve transgenic CD8+ and CD4+ T cells with markedly high efficiency. Applying a triple immunization protocol, PLGA nanoparticles primed also endogenous OVA-specific CD8+ T cells. Immune response, following immunization with in particular anionic PLGA nanoparticles co-encapsulated with OVA and poly(I:C), provided protection against a recombinant strain of the intracellular bacterium Listeria monocytogenes, secreting OVA. Taken together, we show that PLGA nanoparticle formulation is an excellent delivery system for protein antigen into the skin and that protective cellular immune responses can be induced using hollow microneedles for intradermal immunizations.


Assuntos
Antígenos/administração & dosagem , Ácido Láctico/administração & dosagem , Nanopartículas/administração & dosagem , Agulhas , Ovalbumina/administração & dosagem , Poli I-C/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Vacinação/instrumentação , Vacinas/administração & dosagem , Animais , Injeções Intradérmicas , Listeria monocytogenes/imunologia , Masculino , Camundongos Transgênicos , Microinjeções , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Linfócitos T/imunologia , Linfócitos T/transplante , Receptor 3 Toll-Like/agonistas , Vacinação/métodos
16.
Cell Rep ; 20(5): 1242-1253, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768206

RESUMO

Proteasome-catalyzed peptide splicing (PCPS) generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8+ T cells in L. monocytogenes-infected mice. While reacting to the spliced epitopes, these CD8+ T cells failed to recognize the non-spliced peptide parts in the context of their natural flanking sequences. Thus, we here show that PCPS expands the CD8+ T cell response against L. monocytogenes by exposing spliced epitopes on the cell surface. Moreover, our multi-level strategy opens up opportunities to systematically investigate proteins for spliced epitope candidates and thus strategies for immunotherapies or vaccine design.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Epitopos de Linfócito T/genética , Listeriose/genética , Listeriose/patologia , Camundongos , Complexo de Endopeptidases do Proteassoma/genética
17.
Front Immunol ; 8: 1744, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312295

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a global threat. The only approved vaccine against TB, Mycobacterium bovis bacillus Calmette-Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the Mtb antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8+ T cell responses in vivo. As cDNA tattoo immunization would be safer than a live vaccine in immunocompromised patients, we tested the protective efficacy of intradermal tattoo immunization against TB with H56 cDNA, as well as with H56_E, a construct optimized for epitope processing in a mouse model. As Mtb antigens can be used in combination with BCG to boost immune responses, we also tested the protective efficacy of heterologous prime-boost, using dermal tattoo immunization with H56_E cDNA to boost BCG immunization in mice. Dermal H56 and H56_E cDNA immunization induced H56-specific CD4+ and CD8+ T cell responses and Ag85B-specific IgG antibodies, but did not reduce bacterial loads, although immunization with H56_E ameliorated lung pathology. Both subcutaneous and intradermal immunization with BCG resulted in broad cellular immune responses, with increased frequencies of CD4+ T effector memory cells, T follicular helper cells, and germinal center B cells, and resulted in reduced bacterial loads and lung pathology. Heterologous vaccination with BCG/H56_E cDNA induced increased H56-specific CD4+ and CD8+ T cell cytokine responses compared to vaccination with BCG alone, and lung pathology was significantly decreased in BCG/H56_E cDNA immunized mice compared to unvaccinated controls. However, bacterial loads were not decreased after heterologous vaccination compared to BCG alone. CD4+ T cells responding to Ag85B- and ESAT-6-derived epitopes were predominantly IFN-γ+TNF-α+ and TNF-α+IL-2+, respectively. In conclusion, despite inducing appreciable immune responses to Ag85B and ESAT-6, intradermal H56 cDNA tattoo immunization did not substantially enhance the protective effect of BCG under the conditions tested.

18.
Front Immunol ; 8: 1789, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375544

RESUMO

The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin's physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs.

19.
Vaccine ; 34(42): 5132-5140, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27593157

RESUMO

Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA vaccine H56, encoding three secreted Mycobacterium tuberculosis antigens, was used to test a complete strategy to enhance vaccine' immunogenicity. Potential CD8(+) T cell epitopes in H56 were predicted using the NetMHC3.4/ANN program. Mice were immunized with H56 cDNA using dermal DNA tattoo immunization and epitope candidates were tested for recognition by responding CD8(+) T cells in ex vivo assays. Seven novel CD8(+) T cell epitopes were identified. H56 immunogenicity could be substantially enhanced by two strategies: (i) fusion of the H56 sequence to cDNA of proteins that modify intracellular antigen processing or provide CD4(+) T cell help, (ii) by substitution of the epitope's hydrophobic C-terminal flanking residues for polar glutamic acid, which facilitated their proteasome-mediated generation. We conclude that this whole strategy of in silico prediction of potential CD8(+) T cell epitopes in novel antigens, followed by fusion to sequences with immunogenicity-enhancing properties or modification of epitope flanking sequences to improve proteasome-mediated processing, may be exploited to design novel vaccines against emerging or 'hard to treat' intracellular pathogens.


Assuntos
Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunogenicidade da Vacina , Vacinas contra a Tuberculose/imunologia , Vacinas de DNA/imunologia , Animais , Antígenos de Bactérias/genética , Simulação por Computador , DNA Complementar , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunização , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo
20.
Eur J Immunol ; 46(5): 1109-18, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26909514

RESUMO

CD8(+) T cells responding to infection recognize pathogen-derived epitopes presented by MHC class-I molecules. While most of such epitopes are generated by proteasome-mediated antigen cleavage, analysis of tumor antigen processing has revealed that epitopes may also derive from proteasome-catalyzed peptide splicing (PCPS). To determine whether PCPS contributes to epitope processing during infection, we analyzed the fragments produced by purified proteasomes from a Listeria monocytogenes polypeptide. Mass spectrometry identified a known H-2K(b) -presented linear epitope (LLO296-304 ) in the digests, as well as four spliced peptides that were trimmed by ERAP into peptides with in silico predicted H-2K(b) binding affinity. These spliced peptides, which displayed sequence similarity with LLO296-304 , bound to H-2K(b) molecules in cellular assays and one of the peptides was recognized by CD8(+) T cells of infected mice. This spliced epitope differed by one amino acid from LLO296-304 and double staining with LLO296-304 - and spliced peptide-folded MHC multimers showed that LLO296-304 and its spliced variant were recognized by the same CD8(+) T cells. Thus, PCPS multiplies the variety of peptides that is processed from an antigen and leads to the production of epitope variants that can be recognized by cross-reacting pathogen-specific CD8(+) T cells. Such mechanism may reduce the chances for pathogen immune evasion.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína , Animais , Apresentação de Antígeno/imunologia , Simulação por Computador , Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade Classe I/imunologia , Evasão da Resposta Imune , Listeria monocytogenes/química , Espectrometria de Massas , Camundongos , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA