Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EFSA J ; 22(7): e8882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040570

RESUMO

The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. The TUs in the QPS list were updated based on a verification, against their respective authoritative databases, of the correctness of the names and completeness of synonyms. A new procedure has been established to ensure the TUs are kept up to date in relation to recent taxonomical insights. Of 83 microorganisms notified to EFSA between October 2023 and March 2024 (47 as feed additives, 25 as food enzymes or additives, 11 as novel foods), 75 were not evaluated because: 15 were filamentous fungi, 1 was Enterococcus faecium, 10 were Escherichia coli, 1 was a Streptomyces (all excluded from the QPS evaluation) and 48 were TUs that already have a QPS status. Two of the other eight notifications were already evaluated for a possible QPS status in the previous Panel Statement: Heyndrickxia faecalis (previously Weizmannia faecalis) and Serratia marcescens. One was notified at genus level so could not be assessed for QPS status. The other five notifications belonging to five TUs were assessed for possible QPS status. Akkermansia muciniphila and Actinomadura roseirufa were still not recommended for QPS status due to safety concerns. Rhizobium radiobacter can be recommended for QPS status with the qualification for production purposes. Microbacterium arborescens and Burkholderia stagnalis cannot be included in the QPS list due to a lack of body of knowledge for its use in the food and feed chain and for B. stagnalis also due to safety concerns. A. roseirufa and B. stagnalis have been excluded from further QPS assessment.

2.
EFSA J ; 22(1): e8517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213415

RESUMO

The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 71 microorganisms notified to EFSA between April and September 2023 (30 as feed additives, 22 as food enzymes or additives, 7 as novel foods and 12 from plant protection products [PPP]), 61 were not evaluated because: 26 were filamentous fungi, 1 was Enterococcus faecium, 5 were Escherichia coli, 1 was a bacteriophage (all excluded from the QPS evaluation) and 28 were TUs that already have a QPS status. The other 10 notifications belonged to 9 TUs which were evaluated for a possible QPS status: Ensifer adhaerens and Heyndrickxia faecalis did not get the QPS recommendation due to the limited body of knowledge about their occurrence in the food and/or feed chains and Burkholderia ubonensis also due to its ability to generate biologically active compounds with antimicrobial activity; Klebsiella pneumoniae, Serratia marcescens and Pseudomonas putida due to safety concerns. K. pneumoniae is excluded from future QPS evaluations. Chlamydomonas reinhardtii is recommended for QPS status with the qualification 'for production purposes only'; Clostridium tyrobutyricum is recommended for QPS status with the qualification 'absence of genetic determinants for toxigenic activity'; Candida oleophila has been added as a synonym of Yarrowia lipolytica. The Panel clarifies the extension of the QPS status for genetically modified strains.

3.
EFSA J ; 21(7): e08092, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37434788

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 38 microorganisms notified to EFSA between October 2022 and March 2023 (inclusive) (28 as feed additives, 5 as food enzymes, food additives and flavourings, 5 as novel foods), 34 were not evaluated because: 8 were filamentous fungi, 4 were Enterococcus faecium and 2 were Escherichia coli (taxonomic units that are excluded from the QPS evaluation) and 20 were taxonomic units (TUs) that already have a QPS status. Three of the other four TUs notified within this period were evaluated for the first time for a possible QPS status: Anaerobutyricum soehngenii, Stutzerimonas stutzeri (former Pseudomonas stutzeri) and Nannochloropsis oculata. Microorganism strain DSM 11798 has also been notified in 2015 and as its taxonomic unit is notified as a strain not a species, it is not suitable for the QPS approach. A. soehngenii and N. oculata are not recommended for the QPS status due to a limited body of knowledge of its use in the food and feed chains. S. stutzeri is not recommended for inclusion in the QPS list based on safety concerns and limited information about the exposure of animals and humans through the food and feed chains.

4.
EFSA J ; 21(1): e07746, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704192

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, new information was found leading to the withdrawal of the qualification 'absence of aminoglycoside production ability' for Bacillus velezensis. The qualification for Bacillus paralicheniformis was changed to 'absence of bacitracin production ability'. For the other TUs, no new information was found that would change the status of previously recommended QPS TUs. Of 52 microorganisms notified to EFSA between April and September 2022 (inclusive), 48 were not evaluated because: 7 were filamentous fungi, 3 were Enterococcus faecium, 2 were Escherichia coli, 1 was Streptomyces spp., and 35 were taxonomic units (TUs) that already have a QPS status. The other four TUs notified within this period, and one notified previously as a different species, which was recently reclassified, were evaluated for the first time for a possible QPS status: Xanthobacter spp. could not be assessed because it was not identified to the species level; Geobacillus thermodenitrificans is recommended for QPS status with the qualification 'absence of toxigenic activity'. Streptoccus oralis is not recommended for QPS status. Ogataea polymorpha is proposed for QPS status with the qualification 'for production purposes only'. Lactiplantibacillus argentoratensis (new species) is included in the QPS list.

5.
EFSA J ; 20(7): e07408, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898292

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 50 microorganisms notified to EFSA in October 2021 to March 2022 (inclusive), 41 were not evaluated: 10 filamentous fungi, 1 Enterococcus faecium, 1 Clostridium butyricum, 3 Escherichia coli and 1 Streptomyces spp. because are excluded from QPS evaluation, and 25 TUs that have already a QPS status. Nine notifications, corresponding to seven TUs were evaluated: four of these, Streptococcus salivarius, Companilactobacillus formosensis, Pseudonocardia autotrophica and Papiliotrema terrestris, being evaluated for the first time. The other three, Microbacterium foliorum, Pseudomonas fluorescens and Ensifer adhaerens were re-assessed. None of these TUs were recommended for QPS status: Ensifer adhaerens, Microbacterium foliorum, Companilactobacillus formosensis and Papiliotrema terrestris due to a limited body of knowledge, Streptococcus salivarius due to its ability to cause bacteraemia and systemic infection that results in a variety of morbidities, Pseudonocardia autotrophica due to lack of body of knowledge and uncertainty on the safety of biologically active compounds which can be produced, and Pseudomonas fluorescens due to possible safety concerns.

6.
EFSA J ; 20(1): e07045, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35126735

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a generic pre-evaluation of the safety of biological agents. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. The QPS list was updated in relation to the revised taxonomy of the genus Bacillus, to synonyms of yeast species and for the qualifications 'absence of resistance to antimycotics' and 'only for production purposes'. Lactobacillus cellobiosus has been reclassified as Limosilactobacillus fermentum. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS taxonomic units (TU)s. Of the 70 microorganisms notified to EFSA, 64 were not evaluated: 11 filamentous fungi, one oomycete, one Clostridium butyricum, one Enterococcus faecium, five Escherichia coli, one Streptomyces sp., one Bacillus nakamurai and 43 TUs that already had a QPS status. Six notifications, corresponding to six TUs were evaluated: Paenibacillus lentus was reassessed because an update was requested for the current mandate. Enterococcus lactis synonym Enterococcus xinjiangensis, Aurantiochytrium mangrovei synonym Schizochytrium mangrovei, Schizochytrium aggregatum, Chlamydomonas reinhardtii synonym Chlamydomonas smithii and Haematococcus lacustris synonym Haematococcus pluvialis were assessed for the first time. The following TUs were not recommended for QPS status: P. lentus due to a limited body of knowledge, E. lactis synonym E. xinjiangensis due to potential safety concerns, A. mangrovei synonym S. mangrovei, S. aggregatum and C. reinhardtii synonym C. smithii, due to lack of a body of knowledge on its occurrence in the food and feed chain. H. lacustris synonym H. pluvialis is recommended for QPS status with the qualification 'for production purposes only'.

7.
EFSA J ; 19(7): e06689, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257732

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Schizochytrium limacinum, which is a synonym for Aurantiochytrium limacinum, was added to the QPS list. Of the 78 microorganisms notified to EFSA between October 2020 and March 2021, 71 were excluded; 16 filamentous fungi, 1 Dyella spp., 1 Enterococcus faecium, 7 Escherichia coli, 1 Streptomyces spp., 1 Schizochytrium spp. and 44 TUs that had been previously evaluated. Seven TUs were evaluated: Corynebacterium stationis and Kodamaea ohmeri were re-assessed because an update was requested for the current mandate. Anoxybacillus caldiproteolyticus, Bacillus paralicheniformis, Enterobacter hormaechei, Eremothecium ashbyi and Lactococcus garvieae were assessed for the first time. The following TUs were not recommended for QPS status: A. caldiproteolyticus due to the lack of a body of knowledge in relation to its use in the food or feed chain, E. hormaechei, L. garvieae and K. ohmeri due to their pathogenic potential, E. ashbyi and C. stationis due to a lack of body of knowledge on their occurrence in the food and feed chain and to their pathogenic potential. B. paralicheniformis was recommended for the QPS status with the qualification 'absence of toxigenic activity' and 'absence of genetic information to synthesize bacitracin'.

8.
EFSA J ; 19(1): e06377, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33537066

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. It is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at strain or product level, and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 36 microorganisms notified to EFSA between April and September 2020, 33 were excluded; seven filamentous fungi (including Aureobasidium pullulans based on recent taxonomic insights), one Clostridium butyricum, one Enterococcus faecium, three Escherichia coli, one Streptomyces spp. and 20 TUs that had been previously evaluated. Three TUs were evaluated; Methylorubrum extorquens and Mycobacterium aurum for the first time and Bacillus circulans was re-assessed because an update was requested in relation to a new mandate. M. extorquens and M. aurum are not recommended for QPS status due to the lack of a body of knowledge in relation to use in the food or feed chain and M. aurum, due to uncertainty concerning its pathogenicity potential. B. circulans was recommended for QPS status with the qualifications for 'production purposes only' and 'absence of cytotoxic activity'.

9.
Front Bioeng Biotechnol ; 8: 550758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015014

RESUMO

The objective of this work was to identify industrial scenarios for the most promising microalgal biorefinery value chains on the basis of product selection, yields, and techno-economic performance, using biological characteristics of algae species. The development, value creation, and validation of several new processing routes with applications in food, aquafeeds and non-food products were particularly considered in this work. The techno-economic performance of various single product value chains (SP) and multiproduct value chains (MP) was evaluated for four industrial microalgal strains. Cost-revenue optimization was done for a 10 kton microalgal dry weight y-1 simulated biorefinery plant, using flow sheeting software for equipment sizing, mass and energy flow modeling, and subsequent techno-economic evaluation. Data on yield, material and energy consumption were based on pre- and pilot size production plants (TRL 5-6). Revenue optimization was accomplished by first analyzing the performance of single product value chains of the microalgal strains. Subsequently, a strategy was developed to exploit almost all biomass based on the most promising microalgal strains. The cultivation costs are most of the time the major costs of the value chains. For the single product value chains common process bottlenecks are low product yields, especially for soluble proteins where only a small fraction of the biomass is leading to economic value. The biorefinery costs (excluding cultivation) vary significantly for various species, due to the species-specific operating conditions as well as differences in product yields. For the evaluated single product value chain scenarios the costs for utilities and other inputs were in general the highest contributing expenses. A biorefinery approach significantly increases the biomass utilization potential to marketable products from 7-28% to more than 97%. Although the cascading approach increases the total production costs of the multiproduct value chains significantly, this is more than compensated by the increased overall biomass revenue. For all selected multiproduct chains there is a significant potential to become profitable at a relevant industrial scale of 10 kton per year. Additional insights in the product functionality, quality, and their market size are needed to narrow down the wide range of foreseen product revenues and resulting profits.

10.
Microb Cell Fact ; 13: 176, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25492249

RESUMO

BACKGROUND: Lactococcus lactis is a lactic acid bacterium that has been used for centuries in the production of a variety of cheeses, as these bacteria rapidly acidify milk and greatly contribute to the flavour of the fermentation end-products. After a short growth phase during cheese ripening L. lactis enters an extended non-growing state whilst still strongly contributing to amino acid-derived flavour formation. Here, a research approach is presented that allows investigation of strain- and amino acid-specific flavour formation during the non-growing state. RESULTS: Non-growing cells of five selected L. lactis strains were demonstrated to degrade amino acids into flavour compounds that are relevant in food fermentations and differs greatly from production of flavour compounds using growing cells. As observed earlier in other research set-ups and with other microorganisms, addition of NADH, α-ketoglutarate and pyridoxal-5-phosphate was demonstrated to be essential for optimal flavour formation, suggesting that intracellular pools of these substrates are too low for the significant production of the flavour compounds. Production of flavours during the non-growing phase strongly depends on the individual amino acids that were supplied, on the presence of other amino acids (mixtures versus single compounds), and on the strain used. Moreover, we observed that the plasmid-free model strains L. lactis MG1363 and IL1403 produce relatively low amounts of flavour components under the various conditions tested. CONCLUSIONS: By using this simplified and rapid approach to study flavour formation by non-growing lactic acid bacteria, lengthy ripening periods are no longer required to assess the capacity of strains to produce flavours in the long, non-growing state of dairy fermentation. In addition, this method also provides insight into the conversion of single amino acids versus the conversion of a mixture of amino acids as produced during protein degradation. The generated results are complementary to earlier generated datasets using growing cells, allowing assessment of the full flavour forming potential of strains used as starter cultures in industrial food fermentation processes.


Assuntos
Lactococcus lactis/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Queijo/microbiologia
11.
Appl Microbiol Biotechnol ; 97(19): 8729-39, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23974365

RESUMO

Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.


Assuntos
Aromatizantes/metabolismo , Lactococcus lactis/metabolismo , Modelos Biológicos , Biologia de Sistemas/métodos , Carbono/metabolismo , Redes e Vias Metabólicas , Nitrogênio/metabolismo
12.
Food Chem Toxicol ; 47(2): 316-20, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19049816

RESUMO

The chemopreventive effects of high fat microalgal oil diet on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male Fischer 344 rats following 8 weeks of dietary treatment. These effects were compared to the effects of high fat fish oil and high fat corn oil diets to determine whether microalgal oil is a good alternative for fish oil regarding protection against colorectal cancer. Despite the difference in fatty acid composition and total amount of n-3 polyunsaturated fatty acids (PUFAs) between microalgal oil and fish oil, both these oils gave the same 50% reduction of AOM-induced ACF when compared to corn oil. To determine whether oxidative stress could play a role in the chemoprevention of colorectal cancer by n-3 PUFAs, feces and caecal content were examined using the TBA assay. The results showed that lipid peroxidation does occur in the gastrointestinal tract. As several lipid peroxidation products of n-3 PUFAs can induce phase II detoxifying enzymes by an EpRE-mediated pathway, the in vivo results suggest that this route may contribute to n-3 PUFA-mediated chemoprevention. All in all, n-3 PUFA-rich oil from microalgae is as good as fish oil regarding chemoprevention in the colon of the rat.


Assuntos
Neoplasias do Colo/prevenção & controle , Gorduras na Dieta/administração & dosagem , Eucariotos/química , Óleos de Peixe/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Lesões Pré-Cancerosas/prevenção & controle , Ração Animal , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Óleo de Milho/administração & dosagem , Modelos Animais de Doenças , Ácidos Graxos Ômega-3 , Mucosa Intestinal/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/metabolismo , Ratos , Ratos Endogâmicos F344
13.
Food Chem Toxicol ; 45(5): 716-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17141934

RESUMO

Polyunsaturated fatty acid (PUFA) rich micro-algal oil was tested in vitro and compared with fish oil for antiproliferative properties on cancer cells in vitro. Oils derived from Crypthecodinium cohnii, Schizochytrium sp. and Nitzschia laevis, three commercial algal oil capsules, and menhaden fish oil were used in cell viability and proliferation tests with human colon adenocarcinoma Caco-2 cells. With these tests no difference was found between algal oil and fish oil. The nonhydrolysed algal oils and fish oil showed a much lower toxic effect on cell viability, and cell proliferation in Caco-2 cells than the hydrolysed oils and the free fatty acids (FFAs). Eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) were used as samples for comparison with the tested hydrolysed and nonhydrolysed oils. The hydrolysed samples showed comparative toxicity as the free fatty acids and no difference between algal and fish oil. Oxidative stress was shown to play a role in the antiproliferative properties of EPA and DHA, as alpha-tocopherol could partially reverse the EPA/DHA-induced effects. The results of the present study support a similar mode of action of algal oil and fish oil on cancer cells in vitro, in spite of their different PUFA content.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eucariotos , Ácidos Graxos Insaturados/farmacologia , Óleos de Peixe/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Células CACO-2 , Divisão Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Eucariotos/química , Ácidos Graxos Insaturados/química , Óleos de Peixe/química , Humanos , Hidrólise , alfa-Tocoferol/farmacologia
14.
FEBS Lett ; 580(19): 4587-90, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16889775

RESUMO

In this study the n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid appear to be effective inducers of electrophile-responsive element (EpRE) regulated genes, whereas the n-6 PUFA arachidonic acid is not. These n-3 PUFAs need to be oxidized to induce EpRE-regulated gene expression, as the antioxidant vitamin E can partially inhibit the PUFA induced dose-dependent effect. Results were obtained using a reporter gene assay, real-time RT-PCR and enzyme activity assays. The induction of EpRE-regulated phase II genes by n-3 PUFAs may be a major pathway by which n-3 PUFAs, in contrast to n-6 PUFAs, are chemopreventive and anticarcinogenic.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Linhagem Celular , Glutationa Transferase/metabolismo , Camundongos , NAD(P)H Desidrogenase (Quinona) , NADPH Desidrogenase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Peptides ; 26(7): 1113-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15949628

RESUMO

Seeds of Impatiens balsamina contain a set of related antimicrobial peptides (Ib-AMPs). We have produced a synthetic variant of Ib-AMP1, oxidized to the bicyclic native conformation, which was fully active on yeast and fungal strains; and four linear 20-mer Ib-AMP variants, including two all-D forms. We show that the all-D variants are as active on yeast and fungal strains as native peptides. In addition, fungal growth inhibition nor salt-dependency of Ib-AMP4 could be improved by more than two-fold via replacement of amino acid residues by arginine or tryptophan. Native Ib-AMPs showed no hemolytic nor toxic activity up to a concentration of 100 microM. All these data demonstrate the potential of the native Ib-AMPs to combat fungal infections.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Antifúngicos/síntese química , Peptídeos Catiônicos Antimicrobianos/genética , Arginina/genética , Fungos/efeitos dos fármacos , Hemólise , Dados de Sequência Molecular , Mutação , Peptídeos/síntese química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Proteínas de Plantas/genética , Triptofano/genética
16.
J Biotechnol ; 103(1): 21-9, 2003 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-12770501

RESUMO

The lipids of the heterotrophic microalga Crypthecodinium cohnii contain the omega-3 polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (22:6) to a level of over 30%. The pathway of 22:6 synthesis in C. cohnii is unknown. The ability of C. cohnii to use 13C-labelled externally supplied precursor molecules for 22:6 biosynthesis was tested by 13C NMR analysis. Furthermore, the presence of desaturases (typical for aerobic PUFA synthesis) was studied by the addition of specific desaturase inhibitors in the growth medium. The addition of 1-(13)C acetate or 1-(13)C butyrate in the growth medium resulted in 22:6 with only the odd carbon atoms enriched. Apparently, two-carbon units were used as building blocks for 22:6 synthesis and butyrate was first split into two-carbon units prior to incorporation in 22:6. When 1-(13)C oleic acid was added to the growth medium, 1-(13)C oleic acid was incorporated into the lipids of C. cohnii but was not used as a precursor for the synthesis of 22:6. Specific desaturase inhibitors (norflurazon and propyl gallate) inhibited lipid accumulation in C. cohnii. The fatty acid profile, however, was not altered. In contrast, in the arachidonic acid-producing fungus, Mortierella alpina, these inhibitors not only decreased the lipid content but also altered the fatty acid profile. Our results can be explained by the presence of three tightly regulated separate systems for the fatty acid production by C. cohnii, namely for (1). the biosynthesis of saturated fatty acids, (2). the conversion of saturated fatty acids to monounsaturated fatty acids and (3). the de novo synthesis of 22:6 with desaturases involved.


Assuntos
Acrilatos/farmacologia , Dinoflagellida/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Marcação por Isótopo/métodos , Mortierella/metabolismo , Galato de Propila/farmacologia , Piridazinas/farmacologia , Animais , Isótopos de Carbono , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/análise , Ácidos Graxos Dessaturases/antagonistas & inibidores , Mortierella/efeitos dos fármacos , Mortierella/crescimento & desenvolvimento
17.
Biotechnol Bioeng ; 81(6): 666-72, 2003 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-12529880

RESUMO

The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cultivation was studied as an alternative fermentation strategy for DHA production. Glucose and acetic acid were compared as carbon sources. For both substrates, the feed rate was adapted to the maximum specific consumption rate of C. cohnii. In glucose-grown cultures, this was done by maintaining a significant glucose concentration (between 5 and 20 g/L) throughout fermentation. In acetic acid-grown cultures, the medium feed was automatically controlled via the culture pH. A feed consisting of acetic acid (50% w/w) resulted in a higher overall volumetric productivity of DHA (r(DHA)) than a feed consisting of 50% (w/v) glucose (38 and 14 mg/L/h, respectively). The r(DHA) was further increased to 48 mg/L/h using a feed consisting of pure acetic acid. The latter fermentation strategy resulted in final concentrations of 109 g/L dry biomass, 61 g/L lipid, and 19 g/L DHA. These are the highest biomass, lipid, and DHA concentrations reported to date for a heterotrophic alga. Vigorous mixing was required to sustain aerobic conditions during high-cell-density cultivation. This was complicated by culture viscosity, which resulted from the production of viscous extracellular polysaccharides. These may present a problem for large-scale industrial production of DHA. Addition of a commercial polysaccharide-hydrolase preparation could decrease the viscosity of the culture and the required stirring.


Assuntos
Ácido Acético/metabolismo , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Glucose/metabolismo , Animais , Reatores Biológicos/microbiologia , Contagem de Células , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Cultivadas , Dinoflagellida/classificação , Dinoflagellida/efeitos dos fármacos , Glicosídeo Hidrolases/farmacologia , Microbiologia Industrial/métodos , Controle de Qualidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA