Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Toxicol ; 6: 1406942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077557

RESUMO

Introduction: Pharmaceutical residues are widely detected in aquatic environment and can be taken up by nontarget species such as fish. The cytochromes P450 (CYP) represent an important detoxification mechanism in fish, like in humans. In the present study, we assessed the correlation of the substrate selectivities of rainbow trout CYP1A and CYP3A homologues with those of human, through determination of the half-maximal inhibitory concentrations (IC50) of a total sixteen human pharmaceuticals toward CYP1A-like ethoxyresorufin O-deethylase (EROD) and CYP3A-like 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylase (BFCOD) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (RT-S9). Methods: The inhibitory impacts (IC50) of atomoxetine, atorvastatin, azelastine, bimatoprost, clomethiazole, clozapine, desloratadine, disulfiram, esomeprazole, felbinac, flecainide, orphenadrine, prazosin, quetiapine, sulpiride, and zolmitriptan toward the EROD and BFCOD activities in RT-S9 were determined using the IC50 shift assay, capable of identifying time-dependent inhibitors (TDI). Additionally, the nonspecific binding of the test pharmaceuticals to RT-S9 was assessed using equilibrium dialysis. Results: Most test pharmaceuticals were moderate to weak inhibitors of both EROD and BFCOD activity in RT-S9, even if most are noninhibitors of human CYP1A or CYP3A. Only bimatoprost, clomethiazole, felbinac, sulpiride, and zolmitriptan did not inhibit either activity in RT-S9. EROD inhibition was generally stronger than that of BFCOD and some substances (atomoxetine, flecainide, and prazosin) inhibited selectively only EROD activity. The strongest EROD inhibition was detected with azelastine and esomeprazole (unbound IC50 of 3.8 ± 0.5 µM and 3.0 ± 0.8 µM, respectively). None of the test substances were TDIs of BFCOD, but esomeprazole was a TDI of EROD. Apart from clomethiazole and disulfiram, the nonspecific binding of the test pharmaceuticals to the RT-S9 was extensive (unbound fractions <0.5) and correlated well (R 2 = 0.7135) with their water-octanol distribution coefficients. Discussion: The results indicate that the P450 interactions in RT-S9 cannot be explicitly predicted based on human data, but the in vitro data reported herein can shed light on the substrate selectivity of rainbow trout CYP1A1 and CYP3A27 in comparison to their human homologues. The IC50 concentrations are however many orders of magnitude higher than average environmental concentrations of pharmaceuticals. The time-dependent EROD inhibition by esomeprazole could warrant further research to evaluate its possible interlinkages with hepatotoxic impacts on fish.

2.
Eur J Pharm Sci ; 199: 106817, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797439

RESUMO

Pharmaceutical residues are widely detected in surface waters all around the world, causing a range of adverse effects on environmental species, such as fish. Besides population level effects (mortality, reproduction), pharmaceutical residues can bioaccumulate in fish tissues resulting in organ-specific toxicities. In this study, we developed in vitro 3D culture models for rainbow trout (Oncorhynchus mykiss) liver cell line (RTH-149) and cryopreserved, primary rainbow trout hepatocytes (RTHEP), and compared their spheroid formation and susceptibility to toxic impacts of pharmaceuticals. The rapidly proliferating, immortalized RTH-149 cells were shown to form compact spheroids with uniform morphology in just three days, thus enabling higher throughput toxicity screening compared with the primary cells that required acclimation times of about one week. In addition, we screened the cytotoxicity of a total of fourteen clinically used human pharmaceuticals toward the 3D cultures of both RTH-149 cells (metabolically inactive) and primary RTHEP cells (metabolically active), to evaluate the impacts of the pharmaceuticals' own metabolism on their hepatotoxicity in rainbow trout in vitro. Among the test substances, the azole antifungals (clotrimazole and ketoconazole) were identified as the most cytotoxic, with hepatic metabolism indicatively amplifying their toxicity, followed by fluoxetine, levomepromazine, and sertraline, which were slightly less toxic toward the metabolically active primary cells than RTH-149 spheroids. Besides individual pharmaceuticals, the 3D cultures were challenged with mixtures of the eight most toxic substances, to evaluate if their combined mixture toxicities can be predicted based on individual substances' half-maximal effect (EC50) concentrations. As a result, the classical concentration addition approach was concluded sufficiently accurate for preliminarily informing on the approximate effect concentrations of pharmaceutical mixtures on a cellular level. However, direct read-across from human data was proven challenging and inexplicit for prediction of hepatotoxicity in fish in vitro.


Assuntos
Hepatócitos , Oncorhynchus mykiss , Esferoides Celulares , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Esferoides Celulares/efeitos dos fármacos , Preparações Farmacêuticas , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Cultura de Células em Três Dimensões/métodos
3.
Drug Discov Today ; 29(7): 104022, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750927

RESUMO

Active pharmaceutical ingredients (APIs) in the environment, primarily resulting from patient excretion, are of concern because of potential risks to wildlife. This has led to more restrictive regulatory policies. Here, we discuss the 'benign-by-design' approach, which encourages the development of environmentally friendly APIs that are also safe and efficacious for patients. We explore the challenges and opportunities associated with identifying chemical properties that influence the environmental impact of APIs. Although a straightforward application of greener properties could hinder the development of new drugs, more nuanced approaches could lead to drugs that benefit both patients and the environment. We advocate for an enhanced dialogue between research and development (R&D) and environmental scientists and development of a toolbox to incorporate environmental sustainability in drug development.


Assuntos
Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Desenvolvimento de Medicamentos/métodos , Meio Ambiente , Animais , Preparações Farmacêuticas , Química Verde/métodos , Pesquisa
4.
Eur J Pharm Sci ; 197: 106773, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641124

RESUMO

Cytochrome P450 (CYP) system is a critical elimination route to most pharmaceuticals in human, but also prone to drug-drug interactions arising from the fact that concomitantly administered pharmaceuticals inhibit one another's CYP metabolism. The most severe form of CYP interactions is irreversible inhibition, which results in permanent inactivation of the critical CYP pathway and is only restored by de novo synthesis of new functional enzymes. In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC50) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (KM = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (KM = 114 ± 14 µM) and the IC50 values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC50 shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibitors), but whose inhibition mechanism is based on other kind of covalent or irreversible interaction with the CYP system. With our HLM chip approach, we could identify miconazole as such a compound that nonselectively inhibits the human CYP system with a prolonged, possibly irreversible impact in vitro, even if it is not a time-dependent inhibitor according to the IC50 shift assay.


Assuntos
Microssomos Hepáticos , Humanos , Microssomos Hepáticos/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Cinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Miconazol/farmacologia , Enzimas Imobilizadas/metabolismo , Inibidores do Citocromo P-450 CYP2C9/farmacologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Sulfafenazol/farmacologia , Microfluídica/métodos
5.
Eur J Pharm Sci ; 196: 106743, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460610

RESUMO

Environmental impacts of medicines arise throughout their entire life cycle. The pharmaceutical industry has a key role in reducing these impacts in early production phases, but currently has limited possibilities to reduce the environmental exposure arising from drug consumption and end-of-life. The aim of this interview study was to explore the current environmental actions within the industry, as well as the views and attitudes toward the strategies to address the environmental challenges and concerns. Semi-structured interviews were conducted among representatives (n = 15) from twelve pharmaceutical companies operating in Finland in February-May 2021. The data were analyzed using qualitative content analysis. The representatives of pharmaceutical industry were overall well aware of the multifaceted environmental challenges related to the life cycle of pharmaceuticals and of their role in improving sustainability in production. Improving waste management and reducing impacts from companies' own operations were the most commonly mentioned actions already taking place within the companies (15/15). "Environmental impacts arising from drug consumption" (6/15) and "centralized drug manufacturing in countries with lax environmental regulation" (4/15) were most frequently brought up challenges difficult to resolve. "Development of environmentally more sustainable drug production in the company" was the most frequently raised key development need (5/15). To address this, establishment of tangible economic drivers, regulatory incentives, or reputational rewards were called for. "Incorporation of environmental aspects into decision-making in different situations" was suggested by 11/15 interviewees as a means to promote sustainable development, e.g. in selection of medicines by physicians and consumers. However, the attitudes towards the types of criteria and their evaluation differed between interviewees. Attitudes towards the "incorporation of environmental fate assessment into early phases of drug design and development" were mostly positive (10/11), suggesting that there is a keen interest in the industry to foster the introduction of new tools enabling the development of pharmaceuticals intrinsically less harmful for the environment.

6.
Environ Toxicol Chem ; 43(3): 559-574, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36722131

RESUMO

In 2012, 20 key questions related to hazard and exposure assessment and environmental and health risks of pharmaceuticals and personal care products in the natural environment were identified. A decade later, this article examines the current level of knowledge around one of the lowest-ranking questions at that time, number 19: "Can nonanimal testing methods be developed that will provide equivalent or better hazard data compared with current in vivo methods?" The inclusion of alternative methods that replace, reduce, or refine animal testing within the regulatory context of risk and hazard assessment of chemicals generally faces many hurdles, although this varies both by organism (human-centric vs. other), sector, and geographical region or country. Focusing on the past 10 years, only works that might reasonably be considered to contribute to advancements in the field of aquatic environmental risk assessment are highlighted. Particular attention is paid to methods of contemporary interest and importance, representing progress in (1) the development of methods which provide equivalent or better data compared with current in vivo methods such as bioaccumulation, (2) weight of evidence, or (3) -omic-based applications. Evolution and convergence of these risk assessment areas offer the basis for fundamental frameshifts in how data are collated and used for the protection of taxa across the breadth of the aquatic environment. Looking to the future, we are at a tipping point, with a need for a global and inclusive approach to establish consensus. Bringing together these methods (both new and old) for regulatory assessment and decision-making will require a concerted effort and orchestration. Environ Toxicol Chem 2024;43:559-574. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Meio Ambiente , Animais , Humanos , Ecotoxicologia/métodos , Medição de Risco/métodos
7.
Sci Adv ; 9(48): eadg8014, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039364

RESUMO

To study and then harness the tumor-specific T cell dynamics after allogeneic hematopoietic stem cell transplant, we typed the frequency, phenotype, and function of lymphocytes directed against tumor-associated antigens (TAAs) in 39 consecutive transplanted patients, for 1 year after transplant. We showed that TAA-specific T cells circulated in 90% of patients but display a limited effector function associated to an exhaustion phenotype, particularly in the subgroup of patients deemed to relapse, where exhausted stem cell memory T cells accumulated. Accordingly, cancer-specific cytolytic functions were relevant only when the TAA-specific T cell receptors (TCRs) were transferred into healthy, genome-edited T cells. We then exploited trogocytosis and ligandome-on-chip technology to unveil the specificities of tumor-specific TCRs retrieved from the exhausted T cell pool. Overall, we showed that harnessing circulating TAA-specific and exhausted T cells allow to isolate TCRs against TAAs and previously not described acute myeloid leukemia antigens, potentially relevant for T cell-based cancer immunotherapy.


Assuntos
Leucemia Mieloide Aguda , Exaustão das Células T , Humanos , Trogocitose , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Antígenos de Neoplasias , Leucemia Mieloide Aguda/terapia
8.
J Mater Chem C Mater ; 10(12): 4871-4877, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35433006

RESUMO

The full potential of triplet fusion photon upconversion (TF-UC) of providing high-energy photons locally with low-energy excitation is limited in biomedicine and life sciences by its oxygen sensitivity. This hampers the applicability of TF-UC systems in sensors, imaging, optogenetics and drug release. Despite the advances in improving the oxygen tolerability of TF-UC systems, the evaluation of oxygen tolerability is based on comparing the performance at completely deoxygenated (0% oxygen) and ambient (20-21%) conditions, leaving the physiological oxygen levels (0.3-13.5%) neglected. This oversight is not deliberate and is only the result of the lack of simple and predictable methods to obtain and maintain these physiological oxygen levels in an optical setup. Herein, we demonstrate the use of microfluidic chips made of oxygen depleting materials to study the oxygen tolerability of four different micellar nanocarriers made of FDA-approved materials with various oxygen scavenging capabilities by screening their TF-UC performance over physiological oxygen levels. All nanocarriers were capable of efficient TF-UC even in ambient conditions. However, utilizing oxygen scavengers in the oil phase of the nanocarrier improves the oxygen tolerability considerably. For example, at the mean tumour oxygen level (1.4%), nanocarriers made of surfactants and oil phase both capable of oxygen scavenging retained remarkably 80% of their TF-UC emission. This microfluidic concept enables faster, simpler and more realistic evaluation of, not only TF-UC, but any micro or nanoscale oxygen-sensitive system and facilitates their development and implementation in biomedical and life science applications.

9.
Environ Toxicol Chem ; 41(3): 663-676, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255900

RESUMO

Antimicrobials are ubiquitous in the environment and can bioaccumulate in fish. In the present study, we determined the half-maximal inhibitory concentrations (IC50) of 7 environmentally abundant antimicrobials (ciprofloxacin, clarithromycin, clotrimazole, erythromycin, ketoconazole, miconazole, and sulfamethoxazole) on the cytochrome P450 (CYP) system in rainbow trout (Oncorhynchus mykiss) liver microsomes, using 7-ethoxyresorufin O-deethylation (EROD, CYP1A) and 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylation (BFCOD, CYP3A) as model reactions. Apart from ciprofloxacin and sulfamethoxazole, all antimicrobials inhibited either EROD or BFCOD activities or both at concentrations <500 µM. Erythromycin was the only selective and time-dependent inhibitor of BFCOD. Compared with environmental concentrations, the IC50s of individual compounds were generally high (greater than milligrams per liter); but as mixtures, the antimicrobials resulted in strong, indicatively synergistic inhibitions of both EROD and BFCOD at submicromolar (~micrograms per liter) mixture concentrations. The cumulative inhibition of the BFCOD activity was detectable even at picomolar (~nanograms per liter) mixture concentrations and potentiated over time, likely because of the strong inhibition of CYP3A by ketoconazole (IC50 = 1.7 ± 0.3 µM) and clotrimazole (IC50 = 1.2 ± 0.2 µM). The results suggest that if taken up by fish, the mixtures of these antimicrobials may result in broad CYP inactivation and increase the bioaccumulation risk of any other xenobiotic normally cleared by the hepatic CYPs even at biologically relevant concentrations. Environ Toxicol Chem 2022;41:663-676. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Microssomos Hepáticos , Oncorhynchus mykiss , Animais , Ciprofloxacina/toxicidade , Clotrimazol , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Eritromicina , Cetoconazol/farmacologia , Fígado , Sulfametoxazol
10.
ACS Nano ; 15(10): 15992-16010, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34605646

RESUMO

Identification of HLA class I ligands from the tumor surface (ligandome or immunopeptidome) is essential for designing T-cell mediated cancer therapeutic approaches. However, the sensitivity of the process for isolating MHC-I restricted tumor-specific peptides has been the major limiting factor for reliable tumor antigen characterization, making clear the need for technical improvement. Here, we describe our work from the fabrication and development of a microfluidic-based chip (PeptiCHIP) and its use to identify and characterize tumor-specific ligands on clinically relevant human samples. Specifically, we assessed the potential of immobilizing a pan-HLA antibody on solid surfaces via well-characterized streptavidin-biotin chemistry, overcoming the limitations of the cross-linking chemistry used to prepare the affinity matrix with the desired antibodies in the immunopeptidomics workflow. Furthermore, to address the restrictions related to the handling and the limited availability of tumor samples, we further developed the concept toward the implementation of a microfluidic through-flow system. Thus, the biotinylated pan-HLA antibody was immobilized on streptavidin-functionalized surfaces, and immune-affinity purification (IP) was carried out on customized microfluidic pillar arrays made of thiol-ene polymer. Compared to the standard methods reported in the field, our methodology reduces the amount of antibody and the time required for peptide isolation. In this work, we carefully examined the specificity and robustness of our customized technology for immunopeptidomics workflows. We tested this platform by immunopurifying HLA-I complexes from 1 × 106 cells both in a widely studied B-cell line and in patients-derived ex vivo cell cultures, instead of 5 × 108 cells as required in the current technology. After the final elution in mild acid, HLA-I-presented peptides were identified by tandem mass spectrometry and further investigated by in vitro methods. These results highlight the potential to exploit microfluidics-based strategies in immunopeptidomics platforms and in personalized immunopeptidome analysis from cells isolated from individual tumor biopsies to design tailored cancer therapeutic vaccines. Moreover, the possibility to integrate multiple identical units on a single chip further improves the throughput and multiplexing of these assays with a view to clinical needs.


Assuntos
Antígenos de Histocompatibilidade Classe I , Microfluídica , Antígenos de Neoplasias , Humanos , Ligantes , Peptídeos
11.
Lab Chip ; 21(9): 1820-1831, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949410

RESUMO

Tissue oxygen levels are known to be critical to regulation of many cellular processes, including the hepatic metabolism of therapeutic drugs, but its impact is often ignored in in vitro assays. In this study, the material-induced oxygen scavenging property of off-stoichiometric thiol-enes (OSTE) was exploited to create physiologically relevant oxygen concentrations in microfluidic immobilized enzyme reactors (IMERs) incorporating human liver microsomes. This could facilitate rapid screening of, for instance, toxic drug metabolites possibly produced in hypoxic conditions typical for many liver injuries. The mechanism of OSTE-induced oxygen scavenging was examined in depth to enable precise adjustment of the on-chip oxygen concentration with the help of microfluidic flow. The oxygen scavenging rate of OSTE was shown to depend on the type and the amount of the thiol monomer used in the bulk composition, and the surface-to-volume ratio of the chip design, but not on the physical or mechanical properties of the bulk. Our data suggest that oxygen scavenging takes place at the polymer-liquid interface, likely via oxidative reactions of the excess thiol monomers released from the bulk with molecular oxygen. Based on the kinetic constants governing the oxygen scavenging rate in OSTE microchannels, a microfluidic device comprising monolithically integrated oxygen depletion and IMER units was designed and its performance validated with the help of oxygen-dependent metabolism of an antiretroviral drug, zidovudine, which yields a cytotoxic metabolite under hypoxic conditions.


Assuntos
Microfluídica , Preparações Farmacêuticas , Estudos de Viabilidade , Humanos , Hipóxia , Oxigênio , Compostos de Sulfidrila
12.
Eur J Pharm Sci ; 158: 105677, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309889

RESUMO

UDP-glucuronosyltransferases (UGTs), located in the endoplasmic reticulum of liver cells, are an important family of enzymes, responsible for the biotransformation of several endogenous and exogenous chemicals, including therapeutic drugs. However, the phenomenon of 'latency', i.e., full UGT activity revealed by disruption of the microsomal membrane, poses substantial challenges for predicting drug clearance based on in vitro glucuronidation assays. This work introduces a microfluidic reactor design comprising immobilized human liver microsomes to facilitate the study of UGT-mediated drug clearance under flow-through conditions. The performance of the microreactor is characterized using glucuronidation of 8-hydroxyquinoline (via multiple UGTs) and zidovudine (via UGT2B7) as the model reactions. With the help of alamethicin and albumin effects, we show that conducting UGT metabolism assays under flow conditions facilitates in-depth mechanistic studies, which may also shed light on UGT latency.


Assuntos
Microssomos Hepáticos , Preparações Farmacêuticas , Glucuronídeos , Glucuronosiltransferase , Humanos , Microfluídica , Microssomos
13.
Anal Chem ; 92(21): 14693-14701, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33099994

RESUMO

The superfamily of hepatic cytochrome P450 (CYP) enzymes is responsible for the intrinsic clearance of the majority of therapeutic drugs in humans. However, the kinetics of drug clearance via CYPs varies significantly among individuals due to both genetic and external factors, and the enzyme amount and function are also largely impacted by many liver diseases. In this study, we developed a new methodology, based on digital microfluidics (DMF), for rapid determination of individual alterations in CYP activity from human-derived liver samples in biopsy-scale. The assay employs human liver microsomes (HLMs), immobilized on magnetic beads to facilitate determination of the activity of microsomal CYP enzymes in a parallelized system at physiological temperature. The thermal control is achieved with the help of a custom-designed, inkjet-printed microheater array modularly integrated with the DMF platform. The CYP activities are determined with the help of prefluorescent, enzyme-selective model compounds by quantifying the respective fluorescent metabolites based on optical readout in situ. The selectivity and sensitivity of the assay was established for four different CYP model reactions, and the diagnostic concept was validated by determining the interindividual variation in one of the four model reaction activities, that is, ethoxyresorufin O-deethylation (CYP1A1/2), between five donors. Overall, the developed protocol consumes only about 15 µg microsomal protein per assay. It is thus technically adaptable to screening of individual differences in CYP enzyme function from biopsy-scale liver samples in an automated fashion, so as to support tailoring of medical therapies, for example, in the context of liver disease diagnosis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ensaios Enzimáticos/instrumentação , Dispositivos Lab-On-A-Chip , Fígado/enzimologia , Sistema Enzimático do Citocromo P-450/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Desenho de Equipamento , Humanos
14.
Lab Chip ; 20(13): 2372-2382, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32500123

RESUMO

Three-dimensional (3D) printing has recently emerged as a cost-effective alternative for rapid prototyping of microfluidic devices. The feature resolution of stereolithography-based 3D printing is particularly well suited for manufacturing of continuous flow cell culture platforms. Poor cell adhesion or material-induced cell death may, however, limit the introduction of new materials to microfluidic cell culture. In this work, we characterized four commercially available materials commonly used in stereolithography-based 3D printing with respect to long-term (2 month) cell survival on native 3D printed surfaces. Cell proliferation rates, along with material-induced effects on apoptosis and cell survival, were examined in mouse embryonic fibroblasts. Additionally, the feasibility of Dental SG (material with the most favored properties) for culturing of human hepatocytes and human-induced pluripotent stem cells was evaluated. The strength of cell adhesion to Dental SG was further examined over a shear force gradient of 1-89 dyne per cm2 by using a custom-designed microfluidic shear force assay incorporating a 3D printed, tilted and tapered microchannel sealed with a polydimethylsiloxane lid. According to our results, autoclavation of the devices prior to cell seeding played the most important role in facilitating long-term cell survival on the native 3D printed surfaces with the shear force threshold in the range of 3-8 dyne per cm2.


Assuntos
Dispositivos Lab-On-A-Chip , Estereolitografia , Animais , Adesão Celular , Proliferação de Células , Fibroblastos , Camundongos , Impressão Tridimensional
15.
Micromachines (Basel) ; 10(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547432

RESUMO

Organically modified ceramic polymers (ORMOCERs) have attracted substantial interest in biomicrofluidic applications owing to their inherent biocompatibility and high optical transparency even in the near-ultraviolet (UV) range. However, the processes for metallization of ORMOCERs as well as for sealing of metallized surfaces have not been fully developed. In this study, we developed metallization processes for a commercial ORMOCER formulation, Ormocomp, covering several commonly used metals, including aluminum, silver, gold, and platinum. The obtained metallizations were systematically characterized with respect to adhesion (with and without adhesion layers), resistivity, and stability during use (in electrochemical assays). In addition to metal adhesion, the possibility for Ormocomp bonding over each metal as well as sufficient step coverage to guarantee conductivity over topographical features (e.g., over microchannel edges) was addressed with a view to the implementation of not only planar, but also three-dimensional on-chip sensing elements. The feasibility of the developed metallization for implementation of microfluidic electrochemical assays was demonstrated by fabricating an electrophoresis separation chip, compatible with a commercial bipotentiostat, and incorporating integrated working, reference, and auxiliary electrodes for amperometric detection of an electrochemically active pharmaceutical, acetaminophen.

16.
Eur J Pharm Sci ; 138: 104991, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31404622

RESUMO

In this study, the feasibility of direct infusion electrospray ionization microchip mass spectrometry (chip-MS) was compared to the commonly used liquid chromatography-mass spectrometry (LC-MS) in non-targeted metabolomics analysis of human foreskin fibroblasts (HFF) and human induced pluripotent stem cells (hiPSC) reprogrammed from HFF. The total number of the detected features with chip-MS and LC-MS were 619 and 1959, respectively. Approximately 25% of detected features showed statistically significant changes between the cell lines with both analytical methods. The results show that chip-MS is a rapid and simple method that allows high sample throughput from small sample volumes and can detect the main metabolites and classify cells based on their metabolic profiles. However, the selectivity of chip-MS is limited compared to LC-MS and chip-MS may suffer from ion suppression.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metaboloma/fisiologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Metabolômica
17.
Sci Rep ; 9(1): 3311, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824794

RESUMO

Animal studies remain an essential part of drug discovery since in vitro models are not capable of describing the complete living organism. We developed and qualified a microchip electrophoresis-electrochemical detection (MCE-EC) method for rapid analysis of morphine in mouse plasma using a commercial MCE-EC device. Following liquid-liquid extraction (LLE), we achieved within-run precision of 3.7 and 4.5% (coefficient of variation, CV, n = 6) and accuracy of 106.9% and 100.7% at biologically relevant morphine concentrations of 5 and 20 µM in plasma, respectively. The same method was further challenged by morphine detection in mouse brain homogenates with equally good within-run precision (7.8% CV, n = 5) at 1 µM concentration. The qualified method was applied to analyze a set of plasma and brain homogenate samples derived from a behavioral animal study. After intraperitoneal administration of 20 mg/kg morphine hydrochloride, the detected morphine concentrations in plasma were between 6.7 and 17 µM. As expected, the morphine concentrations in the brain were significantly lower, ca. 80-125 nM (280-410 pg morphine/mg dissected brain), and could only be detected after preconcentration achieved during LLE. In all, the microchip-based separation system is proven feasible for rapid analysis of morphine to provide supplementary chemical information to behavioral animal studies.


Assuntos
Encéfalo/metabolismo , Eletroforese em Microchip , Morfina , Plasma/metabolismo , Animais , Injeções Intraperitoneais , Camundongos , Morfina/farmacocinética , Morfina/farmacologia
18.
Anal Bioanal Chem ; 411(11): 2339-2349, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30899997

RESUMO

We introduce rapid replica molding of ordered, high-aspect-ratio, thiol-ene micropillar arrays for implementation of microfluidic immobilized enzyme reactors (IMERs). By exploiting the abundance of free surface thiols of off-stoichiometric thiol-ene compositions, we were able to functionalize the native thiol-ene micropillars with gold nanoparticles (GNPs) and these with proteolytic α-chymotrypsin (CHT) via thiol-gold interaction. The micropillar arrays were replicated via PDMS soft lithography, which facilitated thiol-ene curing without the photoinitiators, and thus straightforward bonding and good control over the surface chemistry (number of free surface thiols). The specificity of thiol-gold interaction was demonstrated over allyl-rich thiol-ene surfaces and the robustness of the CHT-IMERs at different flow rates and reaction temperatures using bradykinin hydrolysis as the model reaction. The product conversion rate was shown to increase as a function of decreasing flow rate (increasing residence time) and upon heating of the IMER to physiological temperature. Owing to the effective enzyme immobilization onto the micropillar array by GNPs, no further purification of the reaction solution was required prior to mass spectrometric detection of the bradykinin hydrolysis products and no clogging problems, commonly associated with conventional capillary packings, were observed. The activity of the IMER remained stable for at least 1.5 h (continuous use), suggesting that the developed protocol may provide a robust, new approach to implementation of IMER technology for proteomics research. Graphical abstract.


Assuntos
Quimotripsina/química , Enzimas Imobilizadas/química , Ouro/química , Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Animais , Bradicinina/química , Bovinos , Hidrólise , Modelos Moleculares
19.
Adv Biosyst ; 3(1): e1800245, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32627340

RESUMO

This work describes a new nanotechnology-based immobilization strategy for cytochrome P450s (CYPs), the major class of drug metabolizing enzymes. Immobilization of CYPs on solid supports provides a significant leap forward compared with soluble enzyme assays by enabling the implementation of through-flow microreactors for, for example, determination of time-dependent inhibition. Immobilization of the complex CYP membrane-protein system is however particularly challenging as the preservation of the authentic enzyme kinetic parameters requires the full complexity of the lipid environment. The developed strategy is based on the spontaneous fusion of biotinylated fusogenic liposomes with lipid bilayers to facilitate the gentle biotinylation of human liver microsomes that incorporate all main natural CYP isoforms. The same process is also feasible for the biotinylation of recombinant CYPs expressed in insect cells, same as any membrane-bound enzymes in principle. As a result, CYPs could be immobilized on streptavidin-functionalized surfaces, both those of commercial magnetic beads and customized microfluidic arrays, so that the enzyme kinetic parameters remain unchanged, unlike in previously reported immobilization approaches that often suffer from restricted substrate diffusion to the enzyme's active site and steric hindrances. The specificity and robustness of the functionalization method of customized microfluidic CYP assays are also carefully examined.

20.
Micromachines (Basel) ; 9(12)2018 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-30544772

RESUMO

This work describes the interfacing of electrowetting-on-dielectric based digital microfluidic (DMF) sample preparation devices with ambient mass spectrometry (MS) via desorption atmospheric pressure photoionization (DAPPI). The DMF droplet manipulation technique was adopted to facilitate drug distribution and metabolism assays in droplet scale, while ambient mass spectrometry (MS) was exploited for the analysis of dried samples directly on the surface of the DMF device. Although ambient MS is well-established for bio- and forensic analyses directly on surfaces, its interfacing with DMF is scarce and requires careful optimization of the surface-sensitive processes, such as sample precipitation and the subsequent desorption/ionization. These technical challenges were addressed and resolved in this study by making use of the high mechanical, thermal, and chemical stability of SU-8. In our assay design, SU-8 served as the dielectric layer for DMF as well as the substrate material for DAPPI-MS. The feasibility of SU-8 based DMF devices for DAPPI-MS was demonstrated in the analysis of selected pharmaceuticals following on-chip liquid-liquid extraction or an enzymatic dealkylation reaction. The lower limits of detection were in the range of 1⁻10 pmol per droplet (0.25⁻1.0 µg/mL) for all pharmaceuticals tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA