Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 203(3-4): 349-360, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951847

RESUMO

Appreciation for the role of cryptofauna in ecological systems has increased dramatically over the past decade. The impacts blood-feeding arthropods, such as ticks and mosquitos, have on terrestrial communities are the subject of hundreds of papers annually. However, blood-feeding arthropods have been largely ignored in marine environments. Gnathiid isopods, often referred to as "ticks of the sea", are temporary external parasites of fishes. They are found in all marine environments and have many consequential impacts on host fitness. Because they are highly mobile and only associated with their hosts while obtaining a blood meal, their broader trophic connections are difficult to discern. Conventional methods rely heavily on detecting gnathiids on wild-caught fishes. However, this approach typically yields few gnathiids and does not account for hosts that avoid capture. To overcome this limitation, we sequenced blood meals of free-living gnathiids collected in light traps to assess the host range and community-dependent exploitation of Caribbean gnathiid isopods. Using fish-specific COI (cox1) primers, sequencing individual blood meals from 1060 gnathiids resulted in the identification of 70 host fish species from 27 families. Comparisons of fish assemblages to blood meal identification frequencies at four collection sites indicated that fishes within the families Haemulidae (grunts) and Lutjanidae (snappers) were exploited more frequently than expected based on their biomass, and Labrid parrotfishes were exploited less frequently than expected. The broad host range along with the biased exploitation of diel-migratory species has important implications for the role gnathiid isopods play in Caribbean coral reef communities.


Assuntos
Doenças dos Peixes , Isópodes , Humanos , Animais , Recifes de Corais , Especificidade de Hospedeiro , Doenças dos Peixes/parasitologia , Peixes , Refeições , Isópodes/parasitologia
2.
J Vis Exp ; (199)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37811939

RESUMO

A method to collect marine gnathiid isopod fish parasites with the use of light traps is presented. Gnathiid isopods are a major group of marine fish parasites that feed on blood and fluid from host fishes, mostly at night. Like ticks and mosquitos on land, they associate only temporarily with their host and spend most of their life free-living in the benthos. Given their high mobility and transient and predominantly nocturnal association with hosts, they cannot easily be collected by capturing free-living hosts. However, they are readily attracted to underwater light sources, creating the opportunity to collect them in light traps. Here the design and individual steps involved in the deployment and processing of specially adapted light traps for collecting free-living stages of gnathiid isopods are outlined. Sample results and possible modifications of the basic protocol for a variety of different sampling needs are presented and discussed.


Assuntos
Doenças dos Peixes , Isópodes , Parasitos , Animais , Isópodes/parasitologia , Peixes , Doenças dos Peixes/parasitologia
3.
Microb Ecol ; 85(2): 372-382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35275230

RESUMO

Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies' level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies' skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities.


Assuntos
Microbiota , Perciformes , Animais , RNA Ribossômico 16S , Peixes/microbiologia , Recifes de Corais , Região do Caribe , Bactérias
4.
Int J Parasitol Parasites Wildl ; 17: 65-73, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34984169

RESUMO

The distribution and abundance of organisms is typically shaped by multiple biotic and abiotic processes. Micropredators are parasite-like organisms that are smaller than their hosts and/or prey and feed on multiple hosts during a given life stage. Unlike typical parasites, however, they spend much or most of their time free-living, associating only temporarily with hosts. In the ocean, micropredators can impact multiple fish species, and in particular can have significant lethal and sub-lethal effects on newly settled fish. Although gnathiid isopods are abundant and primary micropredators in coral reef ecosystems, their impacts are relatively unexplored within sub-tidal temperate rocky reefs. We investigated the distribution of juvenile gnathiid isopods along sub-tidal temperate rocky reefs and tested trap methodology. We also quantified both the sub-lethal and lethal impacts of feeding-stage juvenile gnathiid isopods on juvenile, post-settlement reef fish, Heterostichus rostratus (giant kelpfish). We were most interested in determining the relationship between gnathiid infestation level and fish swimming performance, in particular swimming metrics relevant to predator avoidance maneuvers. We found that Gnathia tridens was present in rocky reefs rather than embayments along the Southern California coastline and that within rocky reefs, gnathiids occurred in the highest densities in lighted traps. Surprisingly, we observed almost no influence of fish size or gnathiid sub-lethal infestation level on ambient or burst swimming performance metrics. However, burst duration was reduced by gnathiid infestation, which is important in predator avoidance. There were significant differences in survivorship among small fish compared to large fish as a result of gnathiid infestation. Larger fish survived higher numbers of gnathiids than smaller fish, indicating that parasite-induced mortality is greater for smaller fish. Investigations of the effects of micropredators on subsequent predator-mediated mortality, including the susceptibility of fishes and their individual responses to micropredators, can further contribute to our understanding of processes affecting recruitment in resident reef fish populations. Further research, especially within temperate sub-tidal ecosystems, is needed to understand and highlight the overlooked importance of micropredation in shaping fish populations within a reefscape.

5.
Int J Parasitol Parasites Wildl ; 14: 355-367, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898237

RESUMO

Due to their unusual life cycle that includes parasitic larval and free living adult stages, gnathiid isopods are typically overlooked in biodiversity surveys, even those that focus on parasites. While the Philippines sits within the region of highest marine biodiversity in the world, the coral triangle, no gnathiid species have been identified or described from that region. Here we present the first records of two gnathiid species collected from the Visayas, central Philippines: Gnathia malaysiensis Müller, 1993, previously described from Malaysia, and G. camuripenis Tanaka, 2004, previously described from southern Japan. This paper provides detailed morphological redescriptions, drawings and scanning electron microscope images as well as the first molecular characterisation of both species, Furthermore, a summary of the Central-Indo Pacific Gnathia species is provided.

6.
J Exp Biol ; 223(Pt 16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32611788

RESUMO

Parasites can account for a substantial proportion of the biomass in marine communities. As such, parasites play a significant ecological role in ecosystem functioning via host interactions. Unlike macropredators, such as large piscivores, micropredators, such as parasites, rarely cause direct mortality. Rather, micropredators impose an energetic tax, thus significantly affecting host physiology and behaviour via sublethal effects. Recent research suggests that infection by gnathiid isopods (Crustacea) causes significant physiological stress and increased mortality rates. However, it is unclear whether infection causes changes in the behaviours that underpin escape responses or changes in routine activity levels. Moreover, it is poorly understood whether the cost of gnathiid infection manifests as an increase in cortisol. To investigate this, we examined the effect of experimental gnathiid infection on the swimming and escape performance of a newly settled coral reef fish and whether infection led to increased cortisol levels. We found that micropredation by a single gnathiid caused fast-start escape performance and swimming behaviour to significantly decrease and cortisol levels to double. Fast-start escape performance is an important predictor of recruit survival in the wild. As such, altered fitness-related traits and short-term stress, perhaps especially during early life stages, may result in large scale changes in the number of fish that successfully recruit to adult populations.


Assuntos
Isópodes , Doenças Parasitárias , Animais , Recifes de Corais , Ecossistema , Peixes
7.
Int J Parasitol ; 50(10-11): 825-837, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505649

RESUMO

The reliance of parasites on their hosts makes host-parasite interactions ideal models for exploring ecological and evolutionary processes. By providing a consistent supply of parasites, in vivo monocultures offer the opportunity to conduct experiments on a scale that is generally not otherwise possible. Gnathiid isopods are common ectoparasites of marine fishes, and are becoming an increasing focus of research attention due to their experimental amenability and ecological importance as ubiquitous, harmful, blood-feeding "mosquito-like" organisms. They feed on hosts once during each of their three juvenile stages, and after each feeding event they return to the benthos to digest and moult to the next stage. Adults do not feed and remain in the benthos, where they reproduce and give birth. Here, we provide methods of culturing gnathiids, and highlight ways in which gnathiids can be used to examine parasite-host-environment interactions. Captive-raised gnathiid juveniles are increasingly being used in parasitological research; however, the methodology for establishing gnathiid monocultures is still not widely known. Information to obtain in vivo monocultures on teleost fish is detailed for a Great Barrier Reef (Australia) and a Caribbean Sea (US Virgin Islands) gnathiid species, and gnathiid information gained over two decades of successfully maintaining continuous cultures is summarised. Providing a suitable benthic habitat for the predominantly benthic free-living stage of this parasite is paramount. Maintenance comprises provision of adequate benthic shelter, managing parasite populations, and sustaining host health. For the first time, we also measured gnathiids' apparent attack speed (maximum 24.5 cm sec-1; 6.9, 4.9/17.0, median, 25th/75th quantiles) and illustrate how to collect such fast moving ectoparasites in captivity for experiments. In addition to providing details pertaining to culture maintenance, we review research using gnathiid cultures that have enabled detailed scientific understanding of host and parasite biology, behaviour and ecology on coral reefs.


Assuntos
Doenças dos Peixes , Isópodes , Parasitos , Animais , Austrália , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Isópodes/crescimento & desenvolvimento , Isópodes/patogenicidade , Ilhas Virgens Americanas
8.
Sci Rep ; 10(1): 8649, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457295

RESUMO

Severe disturbances can substantially alter eco-evolutionary processes and dynamics. While the impacts of catastrophic events on the biophysical attributes of communities are sometimes assessed, their effects on the genetic patterns of species remain poorly understood. To characterize how severe disturbances impact species at the molecular level, we examined the effects of the most energetic North Atlantic hurricane season in 50 years on the genetic diversity and structure of a dispersal-limited isopod, Gnathia marleyi. We sequenced a portion of the cytochrome oxidase I gene for 432 gnathiids, collected from six localities, ranging from western Puerto Rico to St John, US Virgin Islands. Importantly, multiple years of pre-hurricane sample collection allowed us to characterize temporal genetic patterns under undisturbed conditions and detect the changes subsequent to the 2017 hurricanes. Our results revealed no change to genetic diversity or structure for the years prior to the 2017 hurricanes, with genetic structure occurring at the local and regional levels, with three main clusters corresponding to Southwest Puerto Rico, East Puerto Rico, and the US Virgin Islands. However, directly following the 2017 hurricanes, genetic diversity increased at five of the six sampled localities. Additionally, we found a clear homogenizing effect prompted by increased shared genetic diversity among geographically distant regions and sites that resulted in substantially decreased among-region and among-site differentiation. Our work shows that severe disturbances caused by major tropical hurricanes facilitate gene-flow and increase overall genetic diversity and population admixture of dispersal limited coral reef species, potentially impacting the ecology and evolution of a key regional endemic.


Assuntos
Tempestades Ciclônicas , Fenômenos Ecológicos e Ambientais/fisiologia , Fluxo Gênico/genética , Variação Genética/genética , Isópodes/genética , Animais , Oceano Atlântico , Sequência de Bases , Recifes de Corais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Dinâmica Populacional , Análise de Sequência de DNA
9.
Parasitol Res ; 119(6): 1975-1980, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32333110

RESUMO

Gnathiid isopods are marine ectoparasites that feed on the blood of fishes that have been implicated as vectors of blood parasites, with transmission possibly occurring through biting during their parasitic life-stages, or through ingestion by fishes. However, evidence for their role as vectors is limited, reflecting the small number of research groups working on them. Here, we used a molecular barcode approach to identify fish hosts and apicomplexan parasites in free-living gnathiids from the eastern Caribbean Sea, with the goal of further evaluating their potential role as reservoirs and/or vectors for these parasites. Apicomplexa were only identified in 8% of the Gnathia analyzed, and in four cases we could identify both Apicomplexa and fish host DNA. The results further suggest that Gnathia spp. in this region may serve as reservoirs for Apicomplexa, but whether they are vectors for this parasite remains uncertain.


Assuntos
Apicomplexa/isolamento & purificação , Doenças dos Peixes/parasitologia , Isópodes/parasitologia , Animais , Região do Caribe , Recifes de Corais , Código de Barras de DNA Taxonômico , Vetores de Doenças , Peixes/parasitologia
10.
J Parasitol ; 105(5): 793-797, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31647369

RESUMO

Organisms with a parasitic lifestyle comprise a high proportion of biodiversity in aquatic and terrestrial environments. However, there is considerable variation in the ways in which they acquire nutrients. Hematophagy is a common consumption strategy utilized by some terrestrial, aquatic, and marine organisms whereby the parasite removes and digests blood from a host. Gnathiid isopods are marine hematophagous parasites that live in benthic substrates from the intertidal to the abyss. Although ecologically similar to ticks and mosquitoes, they feed only during each of 3 juvenile stages and adults do not feed. They have long been considered as generalist fish parasites and to date, there have been no reports of their successfully feeding on invertebrates. Based on observations of gnathiids attached to soft-bodied invertebrates collected from light traps, we conducted a laboratory experiment in which we collected and individually housed various common Caribbean invertebrates and placed them in containers with gnathiids to see if the gnathiids would feed on them. All fed gnathiids were subsequently removed from containers and given the opportunity to metamorphose to the next developmental stage. In total, 10 out of the 260 gnathiids that were presented with 1 of 4 species of potential invertebrate hosts had fed by the next morning. Specifically, 9 of a possible 120 gnathiids fed on lettuce sea slugs (Elysia crispata), and 1 of a possible 20 fed on a bearded fireworm (Hermodice carunculata). Eight of these 10 fed gnathiids metamorphosed to the next stage (5 to adult male, 2 to adult female, and 1 to third-stage juvenile). Even though feeding rates on invertebrates were considerably lower than observed for laboratory studies on fishes, this study provides the first documented case of gnathiids' feeding on and metamorphosing from invertebrate meals. These findings suggest that when fish hosts are not readily available, gnathiids could switch to soft-bodied invertebrates. They further provide insights into the evolution of feeding on fluids from live hosts in members of this family.


Assuntos
Alimentos/classificação , Gastrópodes , Isópodes/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Poliquetos , Animais , Aplysia/metabolismo , Sangue , Comportamento Alimentar , Feminino , Peixes/sangue , Peixes/parasitologia , Gastrópodes/metabolismo , Isópodes/fisiologia , Masculino , Octopodiformes/metabolismo , Poliquetos/metabolismo
11.
Parasit Vectors ; 12(1): 316, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234905

RESUMO

BACKGROUND: Juvenile gnathiid isopods are common ectoparasites of marine fishes. Each of the three juvenile stages briefly attach to a host to obtain a blood meal but spend most of their time living in the substrate, thus making it difficult to determine patterns of host exploitation. Sequencing of host blood meals from wild-caught specimens is a promising tool to determine host identity. Although established protocols for this approach exist, certain challenges must be overcome when samples are subjected to typical field conditions that may contribute to DNA degradation. The goal of this study was to address a key methodological issue associated with molecular-based host identification from free-living, blood-engorged gnathiid isopods-the degradation of host DNA within blood meals. Here we have assessed the length of time host DNA within gnathiid blood meals can remain viable for positive host identification. METHODS: Juvenile gnathiids were allowed to feed on fish of known species and subsets were preserved at 4-h intervals over 24 h and then every 24 h up to 5 days post-feeding. Host DNA extracted from gnathiid blood meals was sequenced to validate the integrity of host DNA at each time interval. DNA was also extracted from blood meals of wild-fed gnathiids for comparison. Attempts were also made to extract host DNA from metamorphosed juveniles. RESULTS: Using a cox1 universal fish primer set, known fish host DNA sequences were successfully identified for nearly 100% of third-stage juvenile gnathiid blood meals, digested for up to 5 days post-feeding. For second-stage juveniles, host identification was 100% successful when gnathiids were preserved within 24 h of collection. Fish hosts were positively identified for 69% of sequences from wild-fed gnathiid isopods. Of the 31% of sequences not receiving a ≥ 98 % match to a sequence in GenBank, 25 sequences were of possible invertebrate origin. CONCLUSIONS: To our knowledge, this is the first study to examine the degradation rate of gnathiid isopod blood meals. Determining the rate at which gnathiids digest their blood meal is an important step in ensuring the successful host identification by DNA-based methods in large field studies.


Assuntos
DNA/química , Peixes/genética , Peixes/parasitologia , Isópodes/fisiologia , Animais , Sangue , Comportamento Alimentar , Doenças dos Peixes/parasitologia , Larva , Masculino
13.
Oecologia ; 189(2): 293-305, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30349937

RESUMO

The transition from a planktonic larval stage to a benthic or demersal juvenile stage, "recruitment", is a crucial event in the life history of coral reef fishes, and has a strong influence on population size. Predation by piscivorous fishes is thought to be the main determinant of recruitment success, and has received the most attention. However, recent studies suggest that recently settled reef fishes are also an important target of micropredation from blood-feeding ectoparasites which may have significant lethal and sublethal effects. In this study, we quantified the relationship between levels of infestation by gnathiid isopods and mortality rates among juveniles of three species of reef fishes as a function of body mass both within and among species. We found that a single gnathiid isopod larva could kill fish of all three species shortly after settlement, up to 0.116 g [18 mm fork length (FL)] in French grunt (Haemulon flavolineatum), 0.027 g (15 mm FL) in masked goby (Coryphopterus personatus) and 0.01 g (9 mm FL) in beaugregory damselfish (Stegastes leucostictus). For juvenile S. leucostictus, we also compared the ability of fish to defend a territory when infested with a sublethal number of gnathiids versus uninfected individuals. Uninfected fish were significantly more likely to win-pairwise contests versus infected fish. These findings suggest that gnathiids can significantly impact juvenile coral reef fish survival, and affect population dynamics well past the settlement stage.


Assuntos
Isópodes , Perciformes , Animais , Região do Caribe , Recifes de Corais , Peixes
14.
Parasitol Res ; 118(2): 653-655, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30460538

RESUMO

Gnathiid isopods are common external parasites/micropredators that feed on the blood of marine fishes. During the course of processing samples of gnathiid isopods collected from light traps in the central Philippines, we observed a gnathiid attached to and apparently feeding from the abdomen of another gnathiid. Because the abdomens of both gnathiids were enlarged, it was unclear whether one actually fed on the blood meal of the other. Introduction of unfed gnathiids with fed gnathiids revealed that one gnathiid could and did feed on the blood meal of another. This is the first observation of apparent conspecific kleptoparasitism reported for gnathiid isopods.


Assuntos
Isópodes/parasitologia , Parasitos/metabolismo , Animais , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Filipinas
15.
Int J Parasitol Parasites Wildl ; 7(2): 213-220, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29988386

RESUMO

Coral reefs harbor the greatest biodiversity per unit area of any ecosystem on earth. While parasites constitute the majority of this biodiversity, they remain poorly studied due to the cryptic nature of many parasites and the lack of appropriate training among coral reef ecologists. Damselfishes (Pomacentridae) are among the most abundant and diverse fishes on coral reefs. In a recent study of blood parasites of Caribbean reef fishes, the first ever apicomplexan blood parasites discovered in damselfishes were reported for members of the genus Stegastes. While these blood parasites were characterized as "Haemohormidium-like", they appear to be distinct from any other known apicomplexan. In this study, we examined host associations, geographic distributions, and provide further insights on the phylogenetic affiliation of this parasite. A combination of morphological characteristics and 18S rDNA sequences suggest that this parasite may be the same species at multiple sites and occurs from the southern to the northern extreme of the eastern Caribbean, although it appears rare in the north. At present it appears to be limited to members of the genus Stegastes and infects all life history stages. It is most common in benthophagous species that occur in high population densities and appears basal to a major monophyletic clade containing species of coccidia, distinct from the Piroplasmida, the order to which Haemohormidium spp. have been assigned. These findings suggest a possible fecal-oral mode of transmission.

16.
Zookeys ; (663): 21-43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769616

RESUMO

A morphological review and molecular characterization of Anilocra haemuli Bunkley Williams & Williams, 1981, were completed using specimens collected from Haemulon flavolineatum Desmarest, 1823 (French grunt) and Epinephelus guttatus Linnaeus, 1758 (red hind). Molecular and morphological data suggest that the isopods parasitizing H. flavolineatum and E. guttatus are different species. The specimens collected from E. guttatus are recognized as a new species, Anilocra brillaesp. n. Differences between Anilocra brillaesp. n. and A. haemuli include but are not limited to the pleonites 1-3 of A. brillaesp. n. being wider than 4-5 and 4-5 subequal, whereas the pleonites 1-2 of A. haemuli are wider than 3-5, and 3-5 are subequal. The seventh pereopod of A. brillaesp. n. is proportionally larger, has more robust setae, and the setae are distributed more extensively over the articles when compared to A. haemuli. Additionally, this study provides the first genetic characterization of three Anilocra spp. from the Caribbean, and is based on mitochondrial cytochrome c oxidase subunit gene (COI) for A. haemuli from H. flavolineatum, A. brillaesp. n. from E. guttatus, and A. chromis Bunkley Williams & Williams, 1981 from Chromis multilineata Guichenot, 1853.

17.
J Parasitol ; 103(4): 366-376, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28395577

RESUMO

Apicomplexan parasites are obligate parasites of many species of vertebrates. To date, there is very limited understanding of these parasites in the most-diverse group of vertebrates, actinopterygian fishes. While DNA barcoding targeting the eukaryotic 18S small subunit rRNA gene sequence has been useful in identifying apicomplexans in tetrapods, identification of apicomplexans infecting fishes has relied solely on morphological identification by microscopy. In this study, a DNA barcoding method was developed that targets the 18S rRNA gene primers for identifying apicomplexans parasitizing certain actinopterygian fishes. A lead primer set was selected showing no cross-reactivity to the overwhelming abundant host DNA and successfully confirmed 37 of the 41 (90.2%) microscopically verified parasitized fish blood samples analyzed in this study. Furthermore, this DNA barcoding method identified 4 additional samples that screened negative for parasitemia, suggesting this molecular method may provide improved sensitivity over morphological characterization by microscopy. In addition, this PCR screening method for fish apicomplexans, using Whatman FTA preserved DNA, was tested in efforts leading to a more simplified field collection, transport, and sample storage method as well as a streamlining sample processing important for DNA barcoding of large sample sets.


Assuntos
Apicomplexa/classificação , Código de Barras de DNA Taxonômico , Doenças dos Peixes/parasitologia , Parasitemia/veterinária , Infecções Protozoárias em Animais/parasitologia , Animais , Apicomplexa/genética , Teorema de Bayes , Recifes de Corais , Código de Barras de DNA Taxonômico/veterinária , DNA de Protozoário/sangue , DNA de Protozoário/química , DNA Ribossômico/química , Doenças dos Peixes/sangue , Doenças dos Peixes/epidemiologia , Peixes , Funções Verossimilhança , Parasitemia/epidemiologia , Parasitemia/parasitologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/sangue , Infecções Protozoárias em Animais/epidemiologia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Alinhamento de Sequência , Ilhas Virgens Americanas/epidemiologia
18.
Int J Parasitol Parasites Wildl ; 4(1): 125-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25830112

RESUMO

Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ(13)C and δ(15)N values similar to their host, comparable with results from the small number of other host-parasite studies that have employed stable isotopes. Adult gnathiids were enriched in (15)N and depleted in (13)C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ(13)C values consistent with their food source and enriched in (15)N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

19.
J Parasitol ; 101(1): 50-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25302790

RESUMO

Recently, Pterois volitans, a Pacific species of lionfish, invaded the Atlantic Ocean, likely via the aquarium trade. We examined for internal and external parasites 188 individuals from 8 municipalities of Puerto Rico collected during 2009-2012, 91 individuals from Little Cayman, Cayman Islands, collected during the summers of 2010 and 2011, and 47 individuals from Lee Stocking Island, Bahamas, collected during the summer of 2009. In total, 27 parasite taxa were found, including 3 previously reported species from lionfish, the digenean Lecithochirium floridense, the leech Trachelobdella lubrica, and an Excorallana sp. isopod. We also report another 24 previously unreported parasite taxa from lionfish, including digeneans, monogeneans, cestodes, nematodes, isopods, a copepod, and an acanthocephalan. Among these parasites, several were previously unreported at their respective geographic origins: We report 5 new locality records from Puerto Rico, 9 from Cayman Islands, 5 from the Bahamas, 5 from the Caribbean, and 3 from the subtropical western Atlantic region. Three parasites are reported to associate with a fish host for the first time. The parasite faunas of P. volitans among our 3 study sites were quite different; most of the species infecting lionfish were generalists and/or species that infect carnivorous fishes. Although our study did not assess the impact of parasites on the fitness of invasive lionfish, it provides an important early step. Our results provide valuable comparative data for future studies at these and other sites throughout the lionfish's invaded range.


Assuntos
Doenças dos Peixes/parasitologia , Doenças Parasitárias em Animais/parasitologia , Perciformes/parasitologia , Animais , Oceano Atlântico/epidemiologia , Bahamas/epidemiologia , Doenças dos Peixes/epidemiologia , Trato Gastrointestinal/parasitologia , Brânquias/parasitologia , Espécies Introduzidas , Doenças Parasitárias em Animais/epidemiologia , Prevalência , Porto Rico/epidemiologia , Pele/parasitologia , Índias Ocidentais/epidemiologia
20.
Zookeys ; (439): 109-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25317058

RESUMO

Two species of Mothocya Costa, in Hope, 1851 are reported from the Virgin Islands. Mothocya xenobranchia Bruce, 1986 was collected from St. John Island from the gills of the Atlantic needlefish, Strongylura marina, which is a new locality record and also confirms a previously uncertain host identity. Mothocya bertlucy sp. n. is described from St. Thomas, St John and Guana Islands, from the gills of the redlip blenny, Ophioblennius macclurei, the first record of a blenny as host for any Mothocya. The distinguishing characters of Mothocya bertlucy sp. n. include its small size (< 9 mm) and eyes, the slender pleotelson with a narrowly rounded caudomedial point, extended uropod peduncle and uropods which do not extend past the pleotelson posterior margin, and the narrow pleon which is only slightly overlapped by pereonite 7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...