Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 54: 110528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831904

RESUMO

Pulse crops have become more important in food production and consumption systems for the transition towards sustainability. We present an agroecological dataset from 304 samples from 12 legume field trials in five locations across three countries in the Mediterranean. The field trials were established in the seasons 2021/22 and 2022/23 and tested different lentil or chickpea cultivars, inoculants, intercropping and weeding regimes. The dataset encompasses detailed information on wild flora diversity, grain yield, associated management practices, soil texture and weather during the growing period. Wild flora diversity was recorded by conducting a vegetation survey in 1 × 2 m sample plots. Grain yield was determined at the crop maturity stage, with full plots harvested in Spain, while samples were taken in Croatia and Tunisia. Environmental variables were via laboratory analysis or bottle testing of soil samples and analysis of local weather data. The comprehensiveness of the dataset, including all relevant agroecological information, enables other researchers to employ the dataset for various statistical analyses of agroecosystem processes, such as plant-environment interactions or biodiversity-yield trade-off analysis.

2.
Syst Appl Microbiol ; 45(3): 126317, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339819

RESUMO

Phaseolus vulgaris is a legume indigenous to America which is nodulated by strains of genus Rhizobium in Croatia. Four of these strains, 13TT, 9T, 18TT and 8Z are phylogenetically close to the species from the Rhizobium leguminosarum phylogenetic complex in the 16S rRNA gene analysis. The results of both the analyses of the concatenated recA and atpD genes and whole genomes revealed that the strains 13TT and 9T clustered with Rhizobium sophoriradicis CCBAU 03470T and the strains 18TT and 8Z with Rhizobium ecuadorense CNPSO 671T. Whole genome average nucleotide identity blast (ANIb) and dDDH values between the strains 13TT and the type strain of R. sophoriradicis and between the strains 18TT and the type strain of R. ecuadorense were lower than 95% and 70%, respectively, which are the threshold values recommended for bacterial species differentiation. These results combined with those of chemotaxonomic and phenotypic analyses support the affiliation of these strains to two novel species within the genus Rhizobium for which we propose the names Rhizobium croatiense sp. nov. 13TT (=LMG 32397T, = HAMBI 3740T) as type strain and Rhizobium redzepovicii sp. nov. 18TT (=LMG 32398T, = HAMBI 3741T) as type strain.


Assuntos
Phaseolus , Rhizobium , Croácia , DNA Bacteriano/genética , Ácidos Graxos , Hibridização de Ácido Nucleico , Phaseolus/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Syst Appl Microbiol ; 42(6): 126019, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31635886

RESUMO

Phaseolus vulgaris is a legume indigenous to America which is currently cultivated in Europe including countries located at the Southeast of this continent, such as Croatia, where several local landraces are cultivated, most of them of Andean origin. In this work we identify at species and symbiovar levels several fast-growing strains able to form effective symbiosis with P. vulgaris in different Croatian soils. The identification at species level based on MALDI-TOF MS and core gene sequence analysis showed that most of these strains belong to the species R. leguminosarum, R. hidalgonense and R. pisi. In addition, several strains belong to putative new species phylogenetically close to R. ecuadorense and R. sophoriradicis. All Croatian strains belong to the symbiovar phaseoli and harbour the α and γ nodC alleles typical for American strains of this symbiovar. Nevertheless, most of Croatian strains harboured the γ nodC gene allele supporting its Andean origin since it is also dominant in other European countries, where Andean cultivars of P. vulgaris are traditionally cultivated, as occurs in Spain. The only strains harbouring the α nodC allele belong to R. hidalgonense and R. pisi, this last only containing the symbiovars viciae and trifolii to date. This is the first report about the presence in Europe of the species R. hidalgonense, the nodulation of P. vulgaris by R. pisi and the existence of the symbiovar phaseoli within this species. These results significantly increase the knowledge of the biogeography of Rhizobium-P. vulgaris symbiosis.


Assuntos
Biodiversidade , Phaseolus/microbiologia , Filogenia , Rhizobium/classificação , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Proteínas de Bactérias/genética , Croácia , DNA Bacteriano/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Rhizobium/química , Análise de Sequência de DNA , Microbiologia do Solo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Simbiose/genética
4.
Food Technol Biotechnol ; 54(4): 468-474, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28115905

RESUMO

Nodule bacteria (rhizobia) in symbiotic associations with legumes enable considerable entries of biologically fixed nitrogen into soil. Efforts are therefore made to intensify the natural process of symbiotic nitrogen fixation by legume inoculation. Studies of field populations of rhizobia open up the possibility to preserve and probably exploit some indigenous strains with hidden symbiotic or ecological potentials. The main aim of the present study is to determine genetic diversity of common bean rhizobia isolated from different field sites in central Croatia and to evaluate their symbiotic efficiency and compatibility with host plants. The isolation procedure revealed that most soil samples contained no indigenous common bean rhizobia. The results indicate that the cropping history had a significant impact on the presence of indigenous strains. Although all isolates were found to belong to species Rhizobium leguminosarum, significant genetic diversity at the strain level was determined. Application of both random amplification of polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC- -PCR) methods resulted in similar grouping of strains. Symbiotic efficiency of indigenous rhizobia as well as their compatibility with two commonly grown bean varieties were tested in field experiments. Application of indigenous rhizobial strains as inoculants resulted in significantly different values of nodulation, seed yield as well as plant nitrogen and seed protein contents. The most abundant nodulation and the highest plant nitrogen and protein contents were determined in plants inoculated with R. leguminosarum strains S17/2 and S21/6. Although, in general, the inoculation had a positive impact on seed yield, differences depending on the applied strain were not determined. The overall results show the high degree of symbiotic efficiency of the specific indigenous strain S21/6. These results indicate different symbiotic potential of indigenous strains and confirmed the importance of rhizobial strain selection. These are the first studies of indigenous common bean rhizobia in Croatia that provide the basis for further characterization and selection of highly efficient indigenous strains and their potential use in agricultural practice and future research.

5.
Environ Microbiol ; 10(11): 2922-30, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18973619

RESUMO

Inoculation of leguminous seeds with selected rhizobial strains is practised in agriculture to ameliorate the plant yield by enhanced root nodulation and nitrogen uptake of the plant. However, effective symbiosis between legumes and rhizobia does not only depend on the capacity of nitrogen fixation but also on the entire nitrogen turnover in the rhizosphere. We investigated the influence of seed inoculation with two indigenous Sinorhizobium meliloti strains exhibiting different efficiency concerning plant growth promotion on nitrogen turnover processes in the rhizosphere during the growth of alfalfa. Quantification of six target genes (bacterial amoA, nirK, nirS, nosZ, nifH and archaeal amoA) within the nitrogen cycle was performed in rhizosphere samples before nodule formation, at bud development and at the late flowering stage. The results clearly demonstrated that effectiveness of rhizobial inocula is related to abundance of nifH genes in the late flowering phase of alfalfa. Moreover, other genes involved in nitrogen turnover had been affected by the inocula, e.g. higher numbers of amoA copies were observed during flowering when the more effective strain had been inoculated. However, the respective gene abundances differed overall to a greater extent between the three plant development stages than between the inoculation variants.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biodiversidade , Medicago sativa/microbiologia , Nitrogênio/metabolismo , Microbiologia do Solo , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Contagem de Células/métodos , Contagem de Colônia Microbiana/métodos , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/crescimento & desenvolvimento
6.
Microbiol Res ; 157(3): 213-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12398292

RESUMO

Genetic diversity of indigenous Bradyrhizobium japonicum population in Croatia was studied by using different PCR-based fingerprinting methods. Characteristic DNA profiles for 20 B. japonicum field isolates and two reference strains were obtained using random primers (RAPD) and two sets of repetitive primers (REP- and ERIC-PCR). In comparison with the REP, the ERIC primer set generates fingerprints of lower complexity, but still several strain-specific bands were detected. Different B. japonicum isolates could be more efficiently distinguished by using combined results from REP- and ERIC-PCR. The most polymorphic bands were observed after amplification with four different RAPD primers. Both methods, RAPD and rep-PCR, resulted in identical grouping of the strains. Cluster analysis, irrespective of the fingerprinting method used, revealed that all the isolates could be divided into three major groups. Within the major groups, the degree of relative similarity between B. japonicum isolates was dependent upon the method used. Our results indicate that both RAPD and rep-PCR fingerprinting can effectively distinguish different B. japonicum strains. RAPD fingerprinting proved to be slightly more discriminatory than rep-PCR.


Assuntos
Bradyrhizobium/genética , Impressões Digitais de DNA/métodos , Reação em Cadeia da Polimerase/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Bradyrhizobium/classificação , Croácia , DNA Bacteriano/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...