Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 4: 461-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26306320

RESUMO

This study investigated proteomic changes occurring in Anopheles gambiae and Anopheles stephensi during adult mosquito aging. These changes were evaluated using two-dimensional difference gel electrophoresis (2D-DIGE) and the identities of aging related proteins were determined using capillary high-pressure liquid chromatography (capHPLC) coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometry (MS). Here, we have described the techniques used to determine age associated proteomic changes occurring in heads and thoraces across three age groups; 1, 9 and 17 d old A. gambiae and 4 age groups; 1, 9, 17 and 34 d old A. stephensi. We have provided normalised spot volume raw data for all protein spots that were visible on 2D-DIGE images for both species and processed Orbitrap mass spectrometry data. For public access, mass spectrometry raw data are available via ProteomeXchange with identifier PXD002153. A detailed description of this study has been described elsewhere [1].

2.
J Proteomics ; 126: 234-44, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26100052

RESUMO

The age of mosquitoes is a crucial determinant of their ability to transmit pathogens and their resistance to insecticides. We investigated changes to the abundance of proteins found in heads and thoraces of the malaria mosquitoes Anopheles gambiae and Anopheles stephensi as they aged. Protein expression changes were assessed using two-dimensional difference gel electrophoresis and the identity of differentially expressed proteins was determined by using either matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry or capillary high-pressure liquid chromatography coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometer. Protein biomarkers were validated by semi quantitative Western blot analysis. Nineteen and nine age dependent protein spots were identified for A. stephensi and A. gambiae, respectively. Among the proteins down-regulated with age were homologs of ADF/Cofilin, cytochome c1, heat shock protein-70 and eukaryotic translation initiation factor 5A (eIF5a). Proteins up-regulated with age included probable methylmalonate-semialdehyde dehydrogenase, voltage-dependent anion-selective channel and fructose bisphosphate aldolase. Semi quantitative Western blot analysis confirmed expression patterns observed by 2-D DIGE for eIF5a and ADF/Cofilin. Further work is recommended to determine whether these biomarkers are robust to infection, blood feeding and insecticide resistance. Robust biomarkers could then be incorporated into rapid diagnostic assays for ecological and epidemiological studies. BIOLOGICAL SIGNIFICANCE: In this study, we have identified several proteins with characteristic changes in abundance in both A. gambiae and A. stephensi during their aging process. These changes may highlight underlying mechanisms beneath the relationship between mosquito age and factors affecting Plasmodium transmission and mosquito control. The similarity of changes in protein abundance between these species and the primary dengue vector Aedes aegypti, has revealed conserved patterns of aging-specific protein regulation.


Assuntos
Envelhecimento/fisiologia , Anopheles/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/biossíntese , Proteômica , Animais , Anopheles/parasitologia , Malária/transmissão , Plasmodium
3.
PLoS One ; 9(3): e90657, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594705

RESUMO

We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210). Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/metabolismo , Piretrinas/metabolismo , Envelhecimento , Animais , Anopheles/química , Anopheles/fisiologia , Feminino , Resistência a Inseticidas , Espectroscopia de Luz Próxima ao Infravermelho/métodos
4.
PLoS One ; 8(3): e58656, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536806

RESUMO

Biomarkers of the age of mosquitoes are required to determine the risk of transmission of various pathogens as each pathogen undergoes a period of extrinsic incubation in the mosquito host. Using the 2-D Difference Gel Electrophoresis (2-D DIGE) procedure, we investigated the abundance of up to 898 proteins from the Yellow Fever and dengue virus vector, Aedes aegypti, during ageing. By applying a mixed-effects model of protein expression, we identified five common patterns of abundance change during ageing and demonstrated an age-related decrease in variance for four of these. This supported a search for specific proteins with abundance changes that remain tightly associated with ageing for use as ageing biomarkers. Using MALDI-TOF/TOF mass spectrometry we identified ten candidate proteins that satisfied strict biomarker discovery criteria (identified in two out of three multivariate analysis procedures and in two cohorts of mosquitoes). We validated the abundances of the four most suitable candidates (Actin depolymerising factor; ADF, Eukaryotic initiation factor 5A; eIF5A, insect cuticle protein Q17LN8, and Anterior fat body protein; AFP) using semi-quantitative Western analysis of individual mosquitoes of six ages. The redox-response protein Manganese superoxide dismutase (SOD2) and electron shuttling protein Electron transfer oxidoreductase (ETO) were subject to post-translational modifications affecting their charge states with potential effects on function. For the four candidates we show remarkably consistent decreases in abundance during ageing, validating initial selections. In particular, the abundance of AFP is an ideal biomarker candidate for whether a female mosquito has lived long enough to be capable of dengue virus transmission. We have demonstrated proteins to be a suitable class of ageing biomarkers in mosquitoes and have identified candidates for epidemiological studies of dengue and the evaluation of new disease reduction projects targeting mosquito longevity.


Assuntos
Aedes/metabolismo , Envelhecimento , Insetos Vetores/metabolismo , Proteoma , Animais , Biomarcadores/metabolismo , Feminino , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA