Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Neurol Sci ; 44(6): 2173-2176, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36913149

RESUMO

PURPOSE: Heterozygous variants in PRRT2 are mostly associated with benign phenotypes, being the major genetic cause of benign familial infantile seizures (BFIS), as well as in paroxysmal disorders. We report two children from unrelated families with BFIS that evolved to encephalopathy related to status epilepticus during sleep (ESES). METHODS AND RESULTS: Two probands presented with focal motor seizures at 3 months of age, with a limited course. Both children presented, at around 5 years of age, with centro-temporal interictal epileptiform discharges with a source in the frontal operculum, markedly activated by sleep, and associated with stagnation on neuropsychological development. Whole-exome sequencing and co-segregation analysis revealed a frameshift mutation c.649dupC in the proline-rich transmembrane protein 2 (PRRT2) in both probands and all affected family members. CONCLUSION: The mechanism leading to epilepsy and the phenotypic variability of PRRT2 variants remain poorly understood. However, its wide cortical and subcortical expression, in particular in the thalamus, could partially explain both the focal EEG pattern and the evolution to ESES. No variants in the PRRT2 gene have been previously reported in patients with ESES. Due to the rarity of this phenotype, other possible causative cofactors are likely contributing to the more severe course of BFIS in our probands.


Assuntos
Epilepsia Neonatal Benigna , Estado Epiléptico , Humanos , Epilepsia Neonatal Benigna/complicações , Epilepsia Neonatal Benigna/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Convulsões/genética , Convulsões/complicações , Estado Epiléptico/genética
2.
Sci Rep ; 12(1): 22106, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550272

Assuntos
Cromatina , Genoma
3.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452310

RESUMO

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Assuntos
MicroRNAs , Neuropeptídeos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , MicroRNAs/genética , Neuropeptídeos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sono/genética , Vigília/genética , Peixe-Zebra/metabolismo
4.
Bioessays ; 42(2): e1900132, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31994771

RESUMO

This article focuses on the role of the interchromatin compartment (IC) in shaping nuclear landscapes. The IC is connected with nuclear pore complexes (NPCs) and harbors splicing speckles and nuclear bodies. It is postulated that the IC provides routes for imported transcription factors to target sites, for export routes of mRNA as ribonucleoproteins toward NPCs, as well as for the intranuclear passage of regulatory RNAs from sites of transcription to remote functional sites (IC hypothesis). IC channels are lined by less-compacted euchromatin, called the perichromatin region (PR). The PR and IC together form the active nuclear compartment (ANC). The ANC is co-aligned with the inactive nuclear compartment (INC), comprising more compacted heterochromatin. It is postulated that the INC is accessible for individual transcription factors, but inaccessible for larger macromolecular aggregates (limited accessibility hypothesis). This functional nuclear organization depends on still unexplored movements of genes and regulatory sequences between the two compartments.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Heterocromatina/metabolismo , Humanos , Poro Nuclear/metabolismo , Splicing de RNA/fisiologia , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
5.
Am J Hum Genet ; 102(6): 1090-1103, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805044

RESUMO

The 6%-9% risk of an untoward outcome previously established by Warburton for prenatally detected de novo balanced chromosomal rearrangements (BCRs) does not account for long-term morbidity. We performed long-term follow-up (mean 17 years) of a registry-based nationwide cohort of 41 individuals carrying a prenatally detected de novo BCR with normal first trimester screening/ultrasound scan. We observed a significantly higher frequency of neurodevelopmental and/or neuropsychiatric disorders than in a matched control group (19.5% versus 8.3%, p = 0.04), which was increased to 26.8% upon clinical follow-up. Chromosomal microarray of 32 carriers revealed no pathogenic imbalances, illustrating a low prognostic value when fetal ultrasound scan is normal. In contrast, mate-pair sequencing revealed disrupted genes (ARID1B, NPAS3, CELF4), regulatory domains of known developmental genes (ZEB2, HOXC), and complex BCRs associated with adverse outcomes. Seven unmappable autosomal-autosomal BCRs with breakpoints involving pericentromeric/heterochromatic regions may represent a low-risk group. We performed independent phenotype-aware and blinded interpretation, which accurately predicted benign outcomes (specificity = 100%) but demonstrated relatively low sensitivity for prediction of the clinical outcome in affected carriers (sensitivity = 45%-55%). This sensitivity emphasizes the challenges associated with prenatal risk prediction for long-term morbidity in the absence of phenotypic data given the still immature annotation of the morbidity genome and poorly understood long-range regulatory mechanisms. In conclusion, we upwardly revise the previous estimates of Warburton to a morbidity risk of 27% and recommend sequencing of the chromosomal breakpoints as the first-tier diagnostic test in pregnancies with a de novo BCR.


Assuntos
Aberrações Cromossômicas , Diagnóstico Pré-Natal/métodos , Pontos de Quebra do Cromossomo , Estudos de Coortes , Sequência Conservada/genética , Evolução Molecular , Feminino , Genoma Humano , Humanos , Cariotipagem , Gravidez , RNA Longo não Codificante/genética , Fatores de Risco , Análise de Sequência de DNA , Fatores de Tempo
6.
Mol Cell Neurosci ; 88: 118-129, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29289683

RESUMO

The three factors, p53, the microRNA-34 family and Sirtuin 1 (SIRT1), interact in a positive feedback loop involved in cell cycle progression, cellular senescence and apoptosis. Each factor in this triad has roles in metabolic regulation, maintenance of mitochondrial function, and regulation of brain-derived neurotrophic factor (BDNF). Thus, this regulatory network holds potential importance for the pathophysiology of Huntington's disease (HD), an inherited neurodegenerative disorder in which both mitochondrial dysfunction and impaired neurotrophic signalling are observed. We investigated expression of the three members of this regulatory triad in the R6/2 HD mouse model. Compared to wild-type littermates, we found decreased levels of miR-34a-5p, increased SIRT1 mRNA and protein levels, and increased levels of p53 protein in brain tissue from R6/2 mice. The upregulation of SIRT1 did not appear to lead to an increased activity of the enzyme, as based on measures of p53 acetylation. In other words, the observed changes did not reflect the known interactions between these factors, indicating a general perturbation of the p53, miR-34a and SIRT1 pathway in HD. This is the first study investigating the entire triad during disease progression in an HD model. Given the importance of these three factors alone and within the triad, our results indicate that outside factors are regulating - or dysregulating - this pathway in HD.


Assuntos
Doença de Huntington/genética , MicroRNAs/genética , Sirtuína 1/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
7.
Sci Rep ; 7(1): 17893, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263336

RESUMO

Next-generation sequencing (NGS) has caused a revolution, yet left a gap: long-range genetic information from native, non-amplified DNA fragments is unavailable. It might be obtained by optical mapping of megabase-sized DNA molecules. Frequently only a specific genomic region is of interest, so here we introduce a method for selection and enrichment of megabase-sized DNA molecules intended for single-molecule optical mapping: DNA from a human cell line is digested by the NotI rare-cutting enzyme and size-selected by pulsed-field gel electrophoresis. For demonstration, more than 600 sub-megabase- to megabase-sized DNA molecules were recovered from the gel and analysed by denaturation-renaturation optical mapping. Size-selected molecules from the same gel were sequenced by NGS. The optically mapped molecules and the NGS reads showed enrichment from regions defined by NotI restriction sites. We demonstrate that the unannotated genome can be characterized in a locus-specific manner via molecules partially overlapping with the annotated genome. The method is a promising tool for investigation of structural variants in enriched human genomic regions for both research and diagnostic purposes. Our enrichment method could potentially work with other genomes or target specified regions by applying other genomic editing tools, such as the CRISPR/Cas9 system.


Assuntos
DNA/genética , Mapeamento Cromossômico/métodos , Eletroforese em Gel de Campo Pulsado/métodos , Feminino , Genoma Humano/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mapeamento por Restrição/métodos , Análise de Sequência de DNA/métodos
8.
Mol Brain ; 10(1): 43, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870203

RESUMO

The neurotransmitter glutamate facilitates neuronal signalling at excitatory synapses. Glutamate is released from the presynaptic membrane into the synaptic cleft. Across the synaptic cleft glutamate binds to both ion channels and metabotropic glutamate receptors at the postsynapse, which expedite downstream signalling in the neuron. The postsynaptic density, a highly specialized matrix, which is attached to the postsynaptic membrane, controls this downstream signalling. The postsynaptic density also resets the synapse after each synaptic firing. It is composed of numerous proteins including a family of Discs large associated protein 1, 2, 3 and 4 (DLGAP1-4) that act as scaffold proteins in the postsynaptic density. They link the glutamate receptors in the postsynaptic membrane to other glutamate receptors, to signalling proteins and to components of the cytoskeleton. With the central localisation in the postsynapse, the DLGAP family seems to play a vital role in synaptic scaling by regulating the turnover of both ionotropic and metabotropic glutamate receptors in response to synaptic activity. DLGAP family has been directly linked to a variety of psychological and neurological disorders. In this review we focus on the direct and indirect role of DLGAP family on schizophrenia as well as other brain diseases.


Assuntos
Encefalopatias/metabolismo , Neurônios/metabolismo , Proteínas Associadas SAP90-PSD95/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Modelos Biológicos , Mapeamento de Interação de Proteínas , Proteínas Associadas SAP90-PSD95/química
9.
Sci Rep ; 7(1): 5776, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720872

RESUMO

Anatomical subdivisions of the human brain can be associated with different neuronal functions. This functional diversification is reflected by differences in gene expression. By analyzing post-mortem gene expression data from the Allen Brain Atlas, we investigated the impact of transcription factors (TF) and RNA secondary structures on the regulation of gene expression in the human brain. First, we modeled the expression of a gene as a linear combination of the expression of TFs. We devised an approach to select robust TF-gene interactions and to determine localized contributions to gene expression of TFs. Among the TFs with the most localized contributions, we identified EZH2 in the cerebellum, NR3C1 in the cerebral cortex and SRF in the basal forebrain. Our results suggest that EZH2 is involved in regulating ZIC2 and SHANK1 which have been linked to neurological diseases such as autism spectrum disorder. Second, we associated enriched regulatory elements inside differentially expressed mRNAs with RNA secondary structure motifs. We found a group of purine-uracil repeat RNA secondary structure motifs plus other motifs in neuron related genes such as ACSL4 and ERLIN2.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica , RNA/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/genética , Algoritmos , Autopsia , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , RNA/química , Fatores de Transcrição/metabolismo
10.
BMC Med Educ ; 16: 98, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27012245

RESUMO

BACKGROUND: Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major in medicine, received a 2-h training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday clinical practice were demonstrated. RESULTS: Knowledge (Cohen's d = 0.73), intrinsic motivation (d = 0.24), and self-efficacy (d = 0.46) significantly increased from the pre- to post-test. Low knowledge students showed the greatest increases in knowledge (d = 3.35) and self-efficacy (d = 0.61), but a non-significant increase in intrinsic motivation (d = 0.22). The medium and high knowledge students showed significant increases in knowledge (d = 1.45 and 0.36, respectively), motivation (d = 0.22 and 0.31), and self-efficacy (d = 0.36 and 0.52, respectively). Additionally, 90 % of students reported a greater understanding of medical genetics, 82 % thought that medical genetics was more interesting, 93 % indicated that they were more interested and motivated, and had gained confidence by having experienced working on a case story that resembled the real working situation of a doctor, and 78 % indicated that they would feel more confident counseling a patient after the simulation. CONCLUSIONS: The simulation based learning environment increased students' learning, intrinsic motivation, and self-efficacy (although the strength of these effects differed depending on their pre-test knowledge), and increased the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice.


Assuntos
Aconselhamento Genético , Genética Médica/educação , Interface Usuário-Computador , Currículo , Avaliação Educacional , Feminino , Humanos , Masculino , Motivação , Autoeficácia , Estudantes de Medicina/psicologia
11.
Biol Psychiatry ; 79(5): 383-391, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26444075

RESUMO

BACKGROUND: Gilles de la Tourette syndrome (GTS) is a complex neuropsychiatric disorder with a strong genetic influence where copy number variations are suggested to play a role in disease pathogenesis. In a previous small-scale copy number variation study of a GTS cohort (n = 111), recurrent exon-affecting microdeletions of four genes, including the gene encoding arylacetamide deacetylase (AADAC), were observed and merited further investigations. METHODS: We screened a Danish cohort of 243 GTS patients and 1571 control subjects for submicroscopic deletions and duplications of these four genes. The most promising candidate gene, AADAC, identified in this Danish discovery sample was further investigated in cohorts from Iceland, the Netherlands, Hungary, Germany, and Italy, and a final meta-analysis, including a total of 1181 GTS patients and 118,730 control subjects from these six European countries, was performed. Subsequently, expression of the candidate gene in the central nervous system was investigated using human and mouse brain tissues. RESULTS: In the Danish cohort, we identified eight patients with overlapping deletions of AADAC. Investigation of the additional five countries showed a significant association between the AADAC deletion and GTS, and a final meta-analysis confirmed the significant association (p = 4.4 × 10(-4); odds ratio = 1.9; 95% confidence interval = 1.33-2.71). Furthermore, RNA in situ hybridization and reverse transcription-polymerase chain reaction studies revealed that AADAC is expressed in several brain regions previously implicated in GTS pathology. CONCLUSIONS: AADAC is a candidate susceptibility factor for GTS and the present findings warrant further genomic and functional studies to investigate the role of this gene in the pathogenesis of GTS.


Assuntos
Variações do Número de Cópias de DNA/genética , Deleção de Sequência/genética , Síndrome de Tourette/genética , Adulto , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudos de Coortes , Comorbidade , Dinamarca , Éxons , Feminino , Técnicas de Genotipagem , Alemanha , Humanos , Hungria , Islândia , Itália , Masculino , Camundongos , Países Baixos
12.
Rev Sci Instrum ; 86(6): 063702, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26133839

RESUMO

We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free flowing in micro- and nanofluidics emit low fluorescence and change shape, thus challenging the image analysis for machine vision. We demonstrate a set of image processing steps that increase the intrinsically low signal-to-noise ratio associated with single-molecule fluorescence microscopy. Furthermore, we demonstrate how to estimate the length of molecules by continuous real-time image stitching and how to increase the effective resolution of a pressure controller by pulse width modulation. The sequence of image-processing steps addresses the challenges of genomic-length DNA visualization; however, they should also be general to other applications of fluorescence-based microfluidics.


Assuntos
Automação Laboratorial/instrumentação , DNA , Microfluídica/instrumentação , Nanotecnologia/instrumentação , Automação Laboratorial/métodos , Desenho de Equipamento , Fluorescência , Microfluídica/métodos , Nanotecnologia/métodos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Pressão
13.
Neurobiol Dis ; 73: 275-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315682

RESUMO

miR-29 is expressed strongly in the brain and alterations in expression have been linked to several neurological disorders. To further explore the function of this miRNA in the brain, we generated miR-29a/b-1 knockout animals. Knockout mice develop a progressive disorder characterized by locomotor impairment and ataxia. The different members of the miR-29 family are strongly expressed in neurons of the olfactory bulb, the hippocampus and in the Purkinje cells of the cerebellum. Morphological analysis showed that Purkinje cells are smaller and display less dendritic arborisation compared to their wildtype littermates. In addition, a decreased number of parallel fibers form synapses on the Purkinje cells. We identified several mRNAs significantly up-regulated in the absence of the miR-29a/b-1 cluster. At the protein level, however, the voltage-gated potassium channel Kcnc3 (Kv3.3) was significantly up-regulated in the cerebella of the miR-29a/b knockout mice. Dysregulation of KCNC3 expression may contribute to the ataxic phenotype.


Assuntos
Ataxia/metabolismo , Cerebelo/metabolismo , MicroRNAs/metabolismo , Células de Purkinje/metabolismo , Canais de Potássio Shaw/metabolismo , Animais , Comportamento Animal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora
14.
Epilepsia ; 55(12): 2017-27, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25410734

RESUMO

OBJECTIVE: Mesial temporal lobe epilepsy (MTLE) is one of the most common types of the intractable epilepsies and is most often associated with hippocampal sclerosis (HS), which is characterized by pronounced loss of hippocampal pyramidal neurons. microRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and we hypothesized that miRNAs could be involved in the pathogenesis of MTLE and HS. METHODS: miRNA expression was quantified in hippocampal specimens from human patients using miRNA microarray and quantitative real-time polymerase chain reaction RT-PCR, and by RNA-seq on fetal brain specimens from domestic pigs. In situ hybridization was used to show the spatial distribution of miRNAs in the human hippocampus. The potential effect of miRNAs on targets genes was investigated using the dual luciferase reporter gene assay. RESULTS: miRNA expression profiling showed that 25 miRNAs were up-regulated and 5 were down-regulated in hippocampus biopsies of MTLE/HS patients compared to controls. We showed that miR-204 and miR-218 were significantly down-regulated in MTLE and HS, and both were expressed in neurons in all subfields of normal hippocampus. Moreover, miR-204 and miR-218 showed strong changes in expression during fetal development of the hippocampus in pigs, and we identified four target genes, involved in axonal guidance and synaptic plasticity, ROBO1, GRM1, SLC1A2, and GNAI2, as bona fide targets of miR-218. GRM1 was also shown to be a direct target of miR-204. SIGNIFICANCE: miR-204 and miR-218 are developmentally regulated in the hippocampus and may contribute to the molecular mechanisms underlying the pathogenesis of MTLE and HS.


Assuntos
Epilepsia do Lobo Temporal/patologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , MicroRNAs/metabolismo , Adolescente , Adulto , Animais , Estudos de Coortes , Dinamarca , Embrião de Mamíferos , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/metabolismo , Transportador 2 de Aminoácido Excitatório , Feminino , Perfilação da Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Países Baixos , Células Piramidais/metabolismo , Células Piramidais/patologia , Receptores de Glutamato Metabotrópico/metabolismo , Reprodutibilidade dos Testes , Esclerose/etiologia , Esclerose/patologia , Análise de Sequência de RNA , Suínos , Adulto Jovem
15.
Methods Mol Biol ; 1211: 95-102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25218380

RESUMO

MicroRNAs are an abundant class of small noncoding RNAs that regulate and fine-tune the expression of protein-coding genes. Each microRNA regulates around 100 genes, and they are mostly conserved and abundant within the multicellular organisms. Even though microRNAs have a role in many biological processes and diseases, the function of each single microRNA is still yet to be explored in all tissues and cells they are present. Therefore, an efficient in situ hybridization method, combining locked nucleic acid technology and tyramide signal amplification system, has been developed and presented for detection of microRNAs in frozen section at a cellular resolution and with high sensitivity.


Assuntos
Secções Congeladas/métodos , Hibridização in Situ Fluorescente/métodos , MicroRNAs/análise , Animais , Camundongos , MicroRNAs/genética , Oligonucleotídeos/análise , Oligonucleotídeos/genética
16.
Hum Mol Genet ; 23(23): 6163-76, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24986922

RESUMO

Genome instability, epigenetic remodelling and structural chromosomal rearrangements are hallmarks of cancer. However, the coordinated epigenetic effects of constitutional chromosomal rearrangements that disrupt genes associated with congenital neurodevelopmental diseases are poorly understood. To understand the genetic-epigenetic interplay at breakpoints of chromosomal translocations disrupting CG-rich loci, we quantified epigenetic modifications at DLGAP4 (SAPAP4), a key post-synaptic density 95 (PSD95) associated gene, truncated by the chromosome translocation t(8;20)(p12;q11.23), co-segregating with cerebellar ataxia in a five-generation family. We report significant epigenetic remodelling of the DLGAP4 locus triggered by the t(8;20)(p12;q11.23) translocation and leading to dysregulation of DLGAP4 expression in affected carriers. Disruption of DLGAP4 results in monoallelic hypermethylation of the truncated DLGAP4 promoter CpG island. This induced hypermethylation is maintained in somatic cells of carriers across several generations in a t(8;20) dependent-manner however, is erased in the germ cells of the translocation carriers. Subsequently, chromatin remodelling of the locus-perturbed monoallelic expression of DLGAP4 mRNAs and non-coding RNAs in haploid cells having the translocation. Our results provide new mechanistic insight into the way a balanced chromosomal rearrangement associated with a neurodevelopmental disorder perturbs allele-specific epigenetic mechanisms at breakpoints leading to the deregulation of the truncated locus.


Assuntos
Ataxia Cerebelar/genética , Montagem e Desmontagem da Cromatina , Epigênese Genética , Proteínas do Tecido Nervoso/genética , Cromossomos Humanos Par 8/genética , Ilhas de CpG , Metilação de DNA , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Associadas SAP90-PSD95 , Translocação Genética
17.
Eur J Hum Genet ; 22(11): 1283-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24549057

RESUMO

Tourette syndrome is a neurodevelopmental disorder characterized by multiple motor and vocal tics, and the disorder is often accompanied by comorbidities such as attention-deficit hyperactivity-disorder and obsessive compulsive disorder. Tourette syndrome has a complex etiology, but the underlying environmental and genetic factors are largely unknown. IMMP2L (inner mitochondrial membrane peptidase, subunit 2) located on chromosome 7q31 is one of the genes suggested as a susceptibility factor in disease pathogenesis. Through screening of a Danish cohort comprising 188 unrelated Tourette syndrome patients for copy number variations, we identified seven patients with intragenic IMMP2L deletions (3.7%), and this frequency was significantly higher (P=0.0447) compared with a Danish control cohort (0.9%). Four of the seven deletions identified did not include any known exons of IMMP2L, but were within intron 3. These deletions were found to affect a shorter IMMP2L mRNA species with two alternative 5'-exons (one including the ATG start codon). We showed that both transcripts (long and short) were expressed in several brain regions, with a particularly high expression in cerebellum and hippocampus. The current findings give further evidence for the role of IMMP2L as a susceptibility factor in Tourette syndrome and suggest that intronic changes in disease susceptibility genes should be investigated further for presence of alternatively spliced exons.


Assuntos
Endopeptidases/genética , Deleção de Genes , Síndrome de Tourette/genética , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 7/genética , Variações do Número de Cópias de DNA , Dinamarca , Éxons , Feminino , Rearranjo Gênico , Predisposição Genética para Doença , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Análise em Microsséries , Transtorno Obsessivo-Compulsivo/genética , Análise de Sequência de DNA , Tiques/genética , População Branca/genética
18.
Neuroendocrinology ; 98(4): 243-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24080764

RESUMO

MicroRNAs (miRNAs) are short (∼22 nucleotides) non-coding ribonucleic acid (RNA) molecules that negatively regulate the expression of protein-coding genes. Posttranscriptional silencing of target genes by miRNA is initiated by binding to the 3'-untranslated regions of target mRNAs, resulting in specific cleavage and subsequent degradation of the mRNA or by translational repression resulting in specific inhibition of protein synthesis. An increasing amount of evidence shows that miRNAs control a large number of biological processes and there exists a direct link between miRNAs and disease. miRNA molecules are abundantly expressed in tissue-specific and regional patterns and have been suggested as potential biomarkers, disease modulators and drug targets. The central nervous system is a prominent site of miRNA expression. Within the brain, several miRNAs are expressed and/or enriched in the region of the hypothalamus and miRNAs have recently been shown to be important regulators of hypothalamic control functions. The aim of this review is to summarize some of the current knowledge regarding the expression and role of miRNAs in the hypothalamus.


Assuntos
Hipotálamo/metabolismo , MicroRNAs/metabolismo , Animais , Humanos , Neurônios/metabolismo
19.
Psychiatr Genet ; 23(5): 217-21, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23969988

RESUMO

A potential approach for identification of candidate genes for depression is characterization of chromosomal rearrangements. Through analysis of a chromosome translocation in an individual with recurrent depression, we identified a potential candidate gene: the norepinephrine transporter (NET; SLC6A2 for solute carrier 6 family member 2). The gene is responsible for the reuptake of norepinephrine and dopamine into presynaptic nerve terminals and the norepinephrine system appears to play an important role in depression. We therefore analyzed genetic variants within SLC6A2 for association with depression in 408 affected and 559 control individuals from Denmark. After quality control of the genotypes, 31 of 45 single nucleotide polymorphisms (SNPs) were left for analyses. One SNP showed a nominal association with depression but did not survive correction for multiple testing. The results from our study do not suggest SLC6A2 as a susceptibility gene for depression in the Danish population.


Assuntos
Depressão/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Adulto , Quebra Cromossômica , Cromossomos Humanos Par 16/genética , Feminino , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Translocação Genética
20.
Lab Chip ; 12(22): 4628-34, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22911443

RESUMO

Chromosome translocations are a common cause of congenital disorders and cancer. Current detection methods require use of expensive and highly specialized techniques to identify the chromosome regions involved in a translocation. There is a need for rapid yet specific detection for diagnosis and prognosis of patients. In this work we demonstrate a novel, centrifugally-driven microfluidic system for controlled manipulation of oligonucleotides and subsequent detection of chromosomal translocations. The device is fabricated in the form of a disc with capillary burst microvalves employed to control the fluid flow. The microvalves in series are designed to enable fluid movement from the center towards the periphery of the disc to handle DNA sequences representing translocation between chromosome 3 and 9. The translocation detection is performed in two hybridization steps in separate sorting and detection chambers. The burst frequencies of the two capillary burst microvalves are separated by 180 rpm enabling precise control of hybridization in each of the chambers. The DNA probes targeting a translocation are immobilized directly on PMMA by a UV-activated procedure, which is compatible with the disc fabrication method. The device performance was validated by successful specific hybridization of the translocation derivatives in the sorting and detection chambers.


Assuntos
Centrifugação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Translocação Genética , DNA/química , DNA/genética , Desenho de Equipamento , Humanos , Desnaturação de Ácido Nucleico , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...