Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754865

RESUMO

This study delves into the novel utilization of Aristolochia manshuriensis cultured cells for extracellular silver nanoparticles (AgNPs) synthesis without the need for additional substances. The presence of elemental silver has been verified using energy-dispersive X-ray spectroscopy, while distinct surface plasmon resonance peaks were revealed by UV-Vis spectra. Transmission and scanning electron microscopy indicated that the AgNPs, ranging in size from 10 to 40 nm, exhibited a spherical morphology. Fourier-transform infrared analysis validated the abilty of A. manshuriensis extract components to serve as both reducing and capping agents for metal ions. In the context of cytotoxicity on embryonic fibroblast (NIH 3T3) and mouse neuroblastoma (N2A) cells, AgNPs demonstrated varying effects. Specifically, nanoparticles derived from callus cultures exhibited an IC50 of 2.8 µg/mL, effectively inhibiting N2A growth, whereas AgNPs sourced from hairy roots only achieved this only at concentrations of 50 µg/mL and above. Notably, all studied AgNPs' treatment-induced cytotoxicity in fibroblast cells, yielding IC50 values ranging from 7.2 to 36.3 µg/mL. Furthermore, the findings unveiled the efficacy of the synthesized AgNPs against pathogenic microorganisms impacting both plants and animals, including Agrobacterium rhizogenes, A. tumefaciens, Bacillus subtilis, and Escherichia coli. These findings underscore the effectiveness of biotechnological methodologies in offering advanced and enhanced green nanotechnology alternatives for generating nanoparticles with applications in combating cancer and infectious disorders.

2.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37571174

RESUMO

Prospective adjuvant anticancer therapy development includes the establishing of drug delivery systems based on biocompatible and biodegradable carriers. We have designed films and nanoparticles (NPs) based on low-esterified pectin hydrogel using the ionic gelation method. We investigated morphology, nanomechanical properties, biocompatibility and anticancer activity. Hydrogel films are characterized by tunable viscoelastic properties and surface nanoarchitectonics through pectin concentration and esterification degree (DE), expressed in variable pore frequency and diameter. An in vitro study showed a significant reduction in metabolic activity and the proliferation of the U87MG human glioblastoma cell line, probably affected via the adhesion mechanism. Glioma cells formed neurosphere-like conglomerates with a small number of neurites when cultured on fully de-esterified pectin films and they did not produce neurites on the films prepared on 50% esterified pectin. Pectin NPs were examined in terms of size distribution and nanomechanical properties. The NPs' shapes were proved spherical with a mean diameter varying in the range of 90-115 nm, and a negative zeta potential from -8.30 to -7.86 mV, which indicated their stability. The NPs did not demonstrate toxic effect on cells or metabolism inhibition, indicating good biocompatibility. Nanostructured biomaterials prepared on low-esterified pectins could be of interest for biomedical applications in adjuvant anticancer therapy and for designing drug delivery systems.

3.
Polymers (Basel) ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299315

RESUMO

Brain tumors are the most difficult to treat, not only because of the variety of their forms and the small number of effective chemotherapeutic agents capable of suppressing tumor cells, but also limited by poor drug transport across the blood-brain barrier (BBB). Nanoparticles are promising drug delivery solutions promoted by the expansion of nanotechnology, emerging in the creation and practical use of materials in the range from 1 to 500 nm. Carbohydrate-based nanoparticles is a unique platform for active molecular transport and targeted drug delivery, providing biocompatibility, biodegradability, and a reduction in toxic side effects. However, the design and fabrication of biopolymer colloidal nanomaterials have been and remain highly challenging to date. Our review is devoted to the description of carbohydrate nanoparticle synthesis and modification, with a brief overview of the biological and promising clinical outcomes. We also expect this manuscript to highlight the great potential of carbohydrate nanocarriers for drug delivery and targeted treatment of gliomas of various grades and glioblastomas, as the most aggressive of brain tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...