Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2(4): 1549-1560, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026889

RESUMO

Hypoxia is a hallmark of tumor microenvironments, exerting wide-ranging impacts on key processes of tumor progression and metastasis. However, our understanding of how hypoxia regulates these processes has been based primarily on studying the effects of hypoxia within the primary tumor. Recently, an increasing number of studies have suggested the importance of hypoxic regulation within metastatic target organs, but hypoxic metastatic niches in the body are difficult to access with current imaging techniques, hampering detailed in vivo investigation of hypoxia at metastatic sites. Here, we report an engineered biomaterial scaffold that is able to establish an in vivo hypoxic metastatic niche in a readily accessible area, enabling the investigation of hypoxic regulation at a metastatic site. We engineered hypoxic environments within microporous poly(lactide-co-glycolide) (PLG) scaffolds, which have previously been shown to act as premetastatic niche mimics, via the addition of CoCl2, a hypoxia-mimetic agent. When implanted into the subcutaneous region of mice, CoCl2-containing PLG (Co-PLG) scaffolds established hypoxic microenvironments, as evidenced by the stabilization of hypoxia-inducible factor 1α (HIF1α) and increased blood vessel formation in vitro and in vivo. Furthermore, implanted Co-PLG scaffolds were able to recruit 4T1 metastatic breast cancer cells. These results demonstrate that Co-PLG scaffolds can establish an in vivo hypoxic metastatic niche, providing a novel platform to investigate hypoxic regulation of disseminated tumor cells (DTCs) at target organs.

2.
Biomaterials ; 166: 27-37, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29533788

RESUMO

Currently, there are very few therapeutic options for treatment of metastatic disease, as it often remains undetected until the burden of disease is too high. Microporous poly(ε-caprolactone) biomaterials have been shown to attract metastasizing breast cancer cells in vivo early in tumor progression. In order to enhance the therapeutic potential of these scaffolds, they were modified such that infiltrating cells could be eliminated with non-invasive focal hyperthermia. Metal disks were incorporated into poly(ε-caprolactone) scaffolds to generate heat through electromagnetic induction by an oscillating magnetic field within a radiofrequency coil. Heat generation was modulated by varying the size of the metal disk, the strength of the magnetic field (at a fixed frequency), or the type of metal. When implanted subcutaneously in mice, the modified scaffolds were biocompatible and became properly integrated with the host tissue. Optimal parameters for in vivo heating were identified through a combination of computational modeling and ex vivo characterization to both predict and verify heat transfer dynamics and cell death kinetics during inductive heating. In vivo inductive heating of implanted, tissue-laden composite scaffolds led to tissue necrosis as seen by histological analysis. The ability to thermally ablate captured cells non-invasively using biomaterial scaffolds has the potential to extend the application of focal thermal therapies to disseminated cancers.


Assuntos
Materiais Biocompatíveis , Hipertermia Induzida , Alicerces Teciduais , Animais , Humanos , Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Camundongos , Metástase Neoplásica/terapia , Neoplasias/patologia , Neoplasias/terapia , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA