Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(28): 42319-42330, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35224700

RESUMO

Phenol is a widely used synthetic organic compound, which according to global estimations, is discharged into the environment at a rate of 10 tons/year through industrial waste. Phenol is a recalcitrant pollutant, and human exposure to water containing phenolic substances can lead to health issues. It has been found both in drinking water and wastewater. Solar heterogeneous photocatalytic phenol degradation, measured through chemical oxygen demand, was performed on a thin film tilted plate reactor with TiO2 immobilized onto different support materials. A full factorial experimental design (4 × 3 × 3) was carried out to statistically evaluate if the independent variables' effects were significant. Four advanced oxidation processes (photolysis, photolysis + H2O2, heterogeneous photocatalysis, and heterogeneous photocatalysis + H2O2), three support materials (quartz, calcite, and glass), and three pH levels (3, 5.4, and 9) were evaluated. Reaction kinetics were fitted to the pseudo-first-order reaction rate and data was analyzed with an ANCOVA and means test, considering solar light intensity as a covariate. Photolysis/calcite at pH 5.4 and heterogeneous photocatalysis + H2O2/glass plate at pH 3 gave the best results, with a reaction rate constant kph = 3.047 × 10-3 min-1 and kphC = 4.498 × 10-3 min-1, respectively. The three independent variables and their interactions had a significant effect in the phenol degradation (p < 0.05).


Assuntos
Fenol , Poluentes Químicos da Água , Carbonato de Cálcio , Catálise , Humanos , Peróxido de Hidrogênio/química , Cinética , Fenol/química , Fenóis/química , Fotólise , Quartzo , Titânio/química , Poluentes Químicos da Água/química
2.
Environ Sci Pollut Res Int ; 29(41): 61594-61607, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34533752

RESUMO

The following work provides a perspective on the potential application of solar heterogeneous photocatalysis, which is a nonselective advanced oxidation process considered as a sustainable technology, to assist in arsenic removal from water, which is a global threat to human health. Heterogeneous photocatalysis can oxidize trivalent arsenic to pentavalent arsenic, decreasing its toxicity and easing its removal with other technologies, such as chemical precipitation and adsorption. Several lab-scale arsenic photocatalytic oxidation and diverse solar heterogeneous photocatalytic operations carried out in different reactor designs are analyzed. It was found out that this technology has not been translated to operational pilot plant scale prototypes. General research on reactors is scarce, comprising a small percentage of the photocatalysis related scientific literature. It was possible to elucidate some operational parameters that a reactor must comply to operate efficiently. Reports on small-scale application shed light that in areas where other water purification technologies are economically and/or technically not suitable, and the solar energy is available, shed light on the fact that solar heterogeneous photocatalysis is highly promissory within a water purification process for removal of arsenic from water.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Catálise , Humanos , Luz Solar , Titânio , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...