Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Life (Basel) ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38541661

RESUMO

(1) Background: Species of the genus Cymbopogon and its essential oil are known for their antioxidant and hypoglycemic effects. This study aimed to investigate the impact of the essential oil of Cymbopogon flexuosus (EOCF), and its major component, citral, on glycemic, lipid, antioxidant parameters, and oxidative stress in a type 1 diabetes (DM1) rat model. (2) Methods: Initially, EOCF was analyzed by Gas chromatography-mass spectrometry (GC-MS) and the antioxidant activity of EOCF and citral was evaluated. Next, male Wistar rats (3 months old, 200-250 g) induced with DM1 using Streptozotocin (STZ) were divided into four groups: negative control supplemented with an 80% Tween solution, two groups of animals supplemented with EOCF (32 mg/kg and 64 mg/kg) and with citral (32 mg/kg), and treated for 14 days. Measurements of blood glucose levels and body weight were taken; after euthanasia, biochemical markers, including lipid profile, uric acid, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), were evaluated. (3) Results: The predominant compounds in EOCF were α-citral (53.21%) and neral (19.42%), constituting 72.63% citral. EOCF showed good antioxidant activity, significantly greater than citral. EOCF supplementation demonstrated a mitigating effect on glycemic, lipid, and hepatic abnormalities induced by DM1. (4) Conclusions: EOCF emerges as a promising therapeutic option for the management of DM1.

2.
Toxins (Basel) ; 16(2)2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38393161

RESUMO

Snake venoms have evolved in several families of Caenophidae, and their toxins have been assumed to be biochemical weapons with a role as a trophic adaptation. However, it remains unclear how venom contributes to the success of venomous species for adaptation to different environments. Here we compared the venoms from Bothrocophias hyoprora, Bothrops taeniatus, Bothrops bilineatus smaragdinus, Bothrops brazili, and Bothrops atrox collected in the Amazon Rainforest, aiming to understand the ecological and toxinological consequences of venom composition. Transcriptomic and proteomic analyses indicated that the venoms presented the same toxin groups characteristic from bothropoids, but with distinct isoforms with variable qualitative and quantitative abundances, contributing to distinct enzymatic and toxic effects. Despite the particularities of each venom, commercial Bothrops antivenom recognized the venom components and neutralized the lethality of all species. No clear features could be observed between venoms from arboreal and terrestrial habitats, nor in the dispersion of the species throughout the Amazon habitats, supporting the notion that venom composition may not shape the ecological or toxinological characteristics of these snake species and that other factors influence their foraging or dispersal in different ecological niches.


Assuntos
Bothrops , Venenos de Crotalídeos , Serpentes Peçonhentas , Animais , Proteômica , Floresta Úmida , Venenos de Crotalídeos/química , Antivenenos , Serpentes
3.
Brain Sci ; 14(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38248297

RESUMO

Glioblastoma (GBM) is a primary malignant tumor of the central nervous system responsible for the most deaths among patients with primary brain tumors. Current therapies for GBM are not effective, with the average survival of GBM patients after diagnosis being limited to a few months. Chemotherapy is difficult in this case due to the heterogeneity of GBM and the high efficacy of the blood-brain barrier, which makes drug absorption into the brain extremely difficult. In a previous study, 3',4',3,4,5-trimethoxychalcone (MB) showed antiproliferative and anti-invasion activities toward GBM cells. Polymersomes (PMs) are an attractive, new type of nanoparticle for drug administration, due to their high stability, enhanced circulation time, biodegradability, and sustained drug release. In the present study, different MB formulations, PEG2000-PCL and PEG5000-PCL, were synthesized, characterized, and compared in terms of 14-day stability and in vitro cytotoxicity (hCMEC/D3 and U-373 MG).

4.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959857

RESUMO

To unveil and shape the molecular connectivity in (metallo)porphyrin-carbon nanotube hybrids are of main relevance for the multiple medicinal, photoelectronic, catalytic, and photocatalytic applications of these materials. Multi-walled carbon nanotubes (MWCNTs) were modified through 1,3-dipolar cycloaddition reactions with azomethine ylides generated in situ and carrying pentafluorophenyl groups, followed by immobilization of the ß-amino-tetraphenylporphyrinate Zn(II). The functionalities were confirmed via XPS and FTIR, whereas Raman spectroscopy showed disruptions on the graphitic carbon nanotube surface upon both steps. The functionalization extension, measured via TGA mass loss and corroborated via XPS, was 0.2 mmol·g-1. Photophysical studies attest to the presence of the different porphyrin-carbon nanotube connectivity in the nanohybrid. Significantly different emission spectra and fluorescence anisotropy of 0.15-0.3 were observed upon variation of excitation wavelength. Vis-NIR absorption and flash photolysis experiments showed energy/charge transfer in the photoactivated nanohybrid. Moreover, evidence was found for direct reaction of amino groups with a carbon nanotube surface in the presence of molecular dipoles such as the zwitterionic sarcosine amino acid.

5.
Toxins (Basel) ; 15(11)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999489

RESUMO

Amidst the global healthcare landscape, the menace of snakebite envenoming (SBE) has persisted, silently afflicting millions and annually claiming tens of thousands of lives [...].


Assuntos
Tetranitrato de Pentaeritritol , Mordeduras de Serpentes , Humanos , Mordeduras de Serpentes/terapia , Atenção à Saúde , Antivenenos/uso terapêutico
6.
Inflammopharmacology ; 31(5): 2505-2519, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639162

RESUMO

The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of ethyl acetate extract obtained from the leaves of Brazilian peppertree Schinus terebinthifolius Raddi (EAELSt). Total phenols and flavonoids, chemical constituents, in vitro antioxidant activity (DPPH and lipoperoxidation assays), and cytotoxicity in L929 fibroblasts were determined. In vivo anti-inflammatory and antioxidant properties were evaluated using TPA-induced ear inflammation model in mice. Phenol and flavonoid contents were 19.2 ± 0.4 and 93.8 ± 5.2 of gallic acid or quercetin equivalents/g, respectively. LC-MS analysis identified 43 compounds, of which myricetin-O-pentoside and quercetin-O-rhamnoside were major peaks of chromatogram. Incubation with EAELSt decreased the amount of DPPH radical (EC50 of 54.5 ± 2.4 µg/mL) and lipoperoxidation at 200-500 µg/mL. The incubation with EAELSt did not change fibroblast viability up to 100 µg/mL. Topical treatment with EAELSt significantly reduced edema and myeloperoxidase activity at 0.3, 1, and 3 mg/ear when compared to the vehicle-treated group. In addition, EAELSt decreased IL-6 and TNF-α levels and increased IL-10 levels. Besides, it modulated markers of oxidative stress (reduced total hydroperoxides and increased sulfhydryl contents and ferrium reduction potential) and increased the activity of catalase and superoxide dismutase, without altering GPx activity.


Assuntos
Anacardiaceae , Antioxidantes , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Schinus , Quercetina , Brasil , Anacardiaceae/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Folhas de Planta/química
7.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37314175

RESUMO

Cytokinesis is the last step of cell division, when one cell physically divides into two cells. Cytokinesis is driven by an equatorial contractile ring and signals from antiparallel microtubule bundles (the central spindle) that form between the two masses of segregating chromosomes. Bundling of central spindle microtubules is essential for cytokinesis in cultured cells. Using a temperature-sensitive mutant of SPD-1, the homolog of the microtubule bundler PRC1, we demonstrate that SPD-1 is required for robust cytokinesis in the Caenorhabditis elegans early embryo. SPD-1 inhibition results in broadening of the contractile ring, creating an elongated intercellular bridge between sister cells at the last stages of ring constriction that fails to seal. Moreover, depleting anillin/ANI-1 in SPD-1-inhibited cells results in myosin loss from the contractile ring during the second half of furrow ingression, which in turn results in furrow regression and cytokinesis failure. Our results thus reveal a mechanism involving the joint action of anillin and PRC1, which operates during the later stages of furrow ingression to ensure continued functioning of the contractile ring until cytokinesis is complete.


Assuntos
Proteínas de Caenorhabditis elegans , Citocinese , Animais , Proteínas Contráteis/genética , Miosinas , Microtúbulos , Caenorhabditis elegans , Proteínas dos Microfilamentos , Proteínas de Caenorhabditis elegans/genética
8.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175243

RESUMO

In this work we pursued research involving the microwave-assisted N-alkylation of a NH pyrrolidine-fused chlorin with methyl 4-(bromomethyl) benzoate and subsequent ester hydrolysis as a straightforward strategy to obtain carboxylic acid functionality in the pyrrolidine-fused chlorin, as a single reaction product. We studied the reaction's scope by extending the N-alkylation of the free-base chlorin and its corresponding Zn(II) complex to other alkyl halides, including 1,4-diiodobutane, N-(2-bromoethyl)phthalimide, and 2-bromoethanaminium bromide. In addition, two new chlorin-dansyl dyads were synthesized by reacting dansyl chloride with the 2-aminoethyl pyrrolidine-fused chlorin (dyad 6) and NH pyrrolidine-fused chlorin (dyad 7). According to spectral studies, the linker length between the two fluorophores influences the response of the dyads to the solvent polarity. Because of the simplicity of these approaches, we believe it will enable access to a vast library of custom-tailored N-functionalized chlorins while preserving their important absorption and emission spectra as photosensitizers in photodynamic therapy (PDT) of cancer and photodynamic inactivation (PDI) of microorganisms.

9.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677627

RESUMO

We report the use of a carboxylated pyrrolidine-fused chlorin (TCPC) as a fluorescent probe for the determination of glutathione (GSH) in 7.4 pH phosphate buffer. TCPC is a very stable, highly emissive molecule that has been easily obtained from meso-tetrakis(4-methoxycarbonylphenyl) porphyrin (TCPP) through a 1,3-dipolar cycloaddition approach. First, we describe the coordination of TCPC with Hg(II) ions and the corresponding spectral changes, mainly characterized by a strong quenching of the chlorin emission band. Then, the TCPC-Hg2+ complex exhibits a significant fluorescence turn-on in the presence of low concentrations of the target analyte GSH. The efficacy of the sensing molecule was tested by using different TCPC:Hg2+ concentration ratios (1:2, 1:5 and 1:10) that gave rise to sigmoidal response curves in all cases with modulating detection limits, being the lowest 40 nM. The experiments were carried out under physiological conditions and the selectivity of the system was demonstrated against a number of potential interferents, including cysteine. Furthermore, the TCPC macrocycle did not showed a significant fluorescent quenching in the presence of other metal ions.


Assuntos
Mercúrio , Porfirinas , Corantes Fluorescentes/química , Porfirinas/química , Glutationa , Íons , Espectrometria de Fluorescência
10.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559942

RESUMO

In this work new rosamine-silica composites were prepared and their sensing ability towards different amines was assessed. Rice husk wastes were used as a biogenic silica source. Silica was extracted by thermal treatment, before rice husk ash and after acid leaching with citric acid-treated rice husk ash. Mesoporous material (SBA-15) was also prepared using the extracted silica. The prepared materials were characterized by several techniques such as FTIR, XRD, SEM and N2 adsorption. The materials were then used as adsorbents of the chromophore N-methylpyridinium rosamine (Ros4PyMe). The obtained loaded composites were tested in solution for amines sensing (n-butylamine, aniline, putrescine and cadaverine). The detection studies were analyzed by fluorescence and revealed 40% and 48% quenching in fluorescence intensity for the composite Ros4PyMe@SBA in the presence of the biogenic amines cadaverine and putrescine, respectively. The composite was also sensitive in the powder form, changing the color from violet to pale pink in the presence of putrescine vapors with a fast response (around 2 min), the process being reversible by exposure to air.


Assuntos
Oryza , Cadaverina , Putrescina , Aminas Biogênicas , Dióxido de Silício
11.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364042

RESUMO

The search for accurate and sensitive methods to detect chemical substances, namely cations and anions, is urgent and widely sought due to the enormous impact that some of these chemical species have on human health and on the environment. Here, we present a new platform for the efficient sensing of Cu2+ and Li+ cations. For this purpose, two novel photoactive diketopyrrolopyrrole-rhodamine conjugates were synthesized through the condensation of a diketopyrrolopyrrole dicarbaldehyde with rhodamine B hydrazide. The resulting chemosensors 1 and 2, bearing one or two rhodamine hydrazide moieties, respectively, were characterized by 1H and 13C NMR and high-resolution mass spectrometry, and their photophysical and ion-responsive behaviours were investigated via absorption and fluorescence measurements. Chemosensors 1 and 2 displayed a rapid colorimetric response upon the addition of Cu2+, with a remarkable increase in the absorbance and fluorescence intensities. The addition of other metal ions caused no significant effects. Moreover, the resulting chemosensor-Cu2+ complexes revealed to be good probes for the sensing of Li+ with reversibility and low detection limits. The recognition ability of the new chemosensors was investigated by absorption and fluorescence titrations and competitive studies.


Assuntos
Cobre , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Cobre/análise , Rodaminas/química , Cátions , Espectrometria de Fluorescência
12.
Biomolecules ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291743

RESUMO

Biomimetic models are valuable platforms to improve our knowledge on the molecular mechanisms governing membrane-driven processes in (patho)physiological conditions, including membrane permeability, transport, and fusion. However, current membrane models are over simplistic and do not include the membrane's lipid remodelling in response to extracellular stimuli. Our study describes the synthesis of glycated dimyristoyl-phosphatidylethanolamine (DMPE-glyc), which was structurally characterised by mass spectrometry (ESI-MS) and quantified by NMR spectroscopy to be further incorporated in a complex phospholipid (PL) membrane model enriched in cholesterol (Chol) and (glyco)sphingolipids (GSL) designed to mimic epithelial membranes (PL/Chol/GSL) under hyperglycaemia conditions. Characterisation of synthesised DMPE-glyc adducts by tandem mass spectrometry (ESI-MS/MS) show that synthetic DMPE-glyc adducts correspond to Amadori products and quantification by 1H NMR spectroscopy show that the yield of glycation reaction was 8%. The biophysical characterisation of the epithelial membrane model shows that excess glucose alters the thermotropic behaviour and fluidity of epithelial membrane models likely to impact permeability of solutes. The epithelial membrane models developed to mimic normo- and hyperglycaemic scenarios are the basis to investigate (poly)phenol-lipid and drug-membrane interactions crucial in nutrition, pharmaceutics, structural biochemistry, and medicinal chemistry.


Assuntos
Hiperglicemia , Fosfatidiletanolaminas , Humanos , Colesterol/análise , Glucose , Fenóis , Fosfatidiletanolaminas/química , Esfingolipídeos , Espectrometria de Massas em Tandem , Fenômenos Biofísicos
13.
Biomedicines ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36140432

RESUMO

Stress, as a physiological response, is a major factor that affects several processes, including reproductive functions. The main hormonal players of stress are cortisol (humans) and corticosterone (rodents). Sertoli cells (SCs), as key contributors for the testicular homeostasis maintenance, are extensively challenged by different hormones, with glucocorticoid corticosterone being the signaling modulator that may impact these cells at different levels. We aimed to characterize how corticosterone modulates SCs energy balance, putting the mitochondrial performance and signaling output in perspective as the cells can disperse to the surroundings. TM4 mouse SCs were cultured in the absence and presence of corticosterone (in nM: 20, 200, and 2000). Cells were assessed for extracellular metabolic fluxes, mitochondrial performance (cell respirometry, mitochondrial potential, and mitochondrial complex expressions and activities), and the expression of androgen and corticosteroid receptors, as well as interleukine-6 (IL-6) and glutathione content. Corticosterone presented a biphasic impact on the extracellular fluxes of metabolites. Low sub-physiological corticosterone stimulated the glycolytic activity of SCs. Still, no alterations were perceived for lactate and alanine production. However, the lactate/alanine ratio was decreased in a dose-dependent mode, opposite to the mitochondrial complex II activity rise and concurrent with the decrease of IL-6 expression levels. Our results suggest that corticosterone finely tuned the energetic profile of mouse SCs, with sub-physiological concentrations promoting glycolytic expenditure, without translating into cell redox power and mitochondrial respiratory chain performance. Corticosterone deeply impacted the expression of the pro-inflammatory IL-6, which may alter cell-to-cell communication in the testis, in the last instance and impact of the spermatogenic performance.

14.
Toxins (Basel) ; 14(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36006204

RESUMO

The evolution of snake venoms resulted in multigene toxin families that code for structurally similar isoforms eventually harboring distinct functions. PLA2s are dominant toxins in viper venoms, and little is known about the impact of their diversity on human envenomings and neutralization by antivenoms. Here, we show the isolation of three distinct PLA2s from B. atrox venom. FA1 is a Lys-49 homologue, and FA3 and FA4 are catalytic Asp-49 PLA2s. FA1 and FA3 are basic myotoxic proteins, while FA4 is an acid non-myotoxic PLA2. FA3 was the most potent toxin, inducing higher levels of edema, inflammatory nociception, indirect hemolysis, and anticoagulant activity on human, rat, and chicken plasmas. FA4 presented lower anticoagulant activity, and FA1 had only a slight effect on human and rat plasmas. PLA2s presented differential reactivities with antivenoms, with an emphasis on FA3, which was not recognized or neutralized by the antivenoms used in this study. Our findings reveal the functional and antigenic diversity among PLA2s from B. atrox venom, highlighting the importance of assessing venom variability for understanding human envenomations and treatment with antivenoms, particularly evident here as the antivenom fails to recognize FA3, the most active multifunctional toxin described.


Assuntos
Bothrops , Venenos de Crotalídeos , Mordeduras de Serpentes , Animais , Antivenenos/uso terapêutico , Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Humanos , Fosfolipases A2/toxicidade , Ratos , Mordeduras de Serpentes/tratamento farmacológico
15.
Front Immunol ; 13: 842576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615352

RESUMO

Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.


Assuntos
Produtos Biológicos , Plantas Medicinais , Mordeduras de Serpentes , Animais , Antivenenos/farmacologia , Antivenenos/uso terapêutico , Produtos Biológicos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/uso terapêutico
16.
Toxins (Basel) ; 14(4)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448846

RESUMO

Interspecific differences in snake venom compositions can result from distinct regulatory mechanisms acting in each species. However, comparative analyses focusing on identifying regulatory elements and patterns that led to distinct venom composition are still scarce. Among venomous snakes, Bothrops cotiara and Bothrops fonsecai represent ideal models to complement our understanding of the regulatory mechanisms of venom production. These recently diverged species share a similar specialized diet, habitat, and natural history, but each presents a distinct venom phenotype. Here, we integrated data from the venom gland transcriptome and miRNome and the venom proteome of B. fonsecai and B. cotiara to better understand the regulatory mechanisms that may be acting to produce differing venom compositions. We detected not only the presence of similar toxin isoforms in both species but also distinct expression profiles of phospholipases A2 (PLA2) and some snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) isoforms. We found evidence of modular expression regulation of several toxin isoforms implicated in venom divergence and observed correlated expression of several transcription factors. We did not find strong evidence for miRNAs shaping interspecific divergence of the venom phenotypes, but we identified a subset of toxin isoforms whose final expression may be fine-tuned by specific miRNAs. Sequence analysis on orthologous toxins showed a high rate of substitutions between PLA2s, which indicates that these toxins may be under strong positive selection or represent paralogous toxins in these species. Our results support other recent studies in suggesting that gene regulation is a principal mode of venom evolution across recent timescales, especially among species with conserved ecotypes.


Assuntos
Bothrops , Venenos de Crotalídeos , MicroRNAs , Toxinas Biológicas , Animais , Bothrops/genética , Bothrops/metabolismo , Brasil , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/metabolismo , MicroRNAs/metabolismo , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Venenos de Serpentes/metabolismo , Toxinas Biológicas/metabolismo
17.
Molecules ; 27(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35268668

RESUMO

Functionalization of xanthene fluorophores with specific receptor units is an important topic of research aiming for the development of new analytical tools for biological sciences, clinical diagnosis, food and environmental monitoring. Herein, we report a new dihydrorosamine containing two active amino groups, which was functionalized with 3-benzyloxy-1-(3'-carboxypropyl)-2-methyl-4-pyridinone through an amide coupling strategy. Benzylated mono- and di-functionalized dihydrorosamine derivatives (H in position 9 of the xanthene) were obtained, but with modest reaction yields, requiring long and laborious purification procedures. Looking for a more efficient approach, rhodamine 110 was selected to react with the carboxypropyl pyridinone, enabling the isolation of the corresponding mono- and di-functionalized derivatives in amounts that depend on the excess of pyridinone added to the reaction. The structure of all compounds was established by 1H and 13C NMR, MS (ESI) and their absorption and emission properties were evaluated in dichloromethane. The fluorescence behavior of the debenzylated mono-rhodamine 110 derivative in the presence of Fe(III) was studied, making it an interesting fluorogenic dye for future optical sensing applications.

18.
J Med Virol ; 94(7): 3410-3415, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35233783

RESUMO

Through active surveillance and contact tracing from outpatients, we aimed to identify and characterize SARS-CoV-2 variants circulating in Porto Velho-Rondônia, a city in the Brazilian Amazon. As part of a prospective cohort, we gathered information from 2,506 individuals among COVID-19 patients and household contacts. Epidemiological data, nasopharyngeal swabs, and blood samples were collected from all participants. Nasopharyngeal swabs were tested for antigen rapid diagnostic test and reverse transcription-polymerase chain reaction (RT-PCR) followed by genomic sequencing. Blood samples underwent ELISA testing for IgA, IgG, and IgM antibody levels. From 757 specimens sequenced, three were identified as Mu variant, none of the individuals carrying this variant had a travel history in the previous 15 days before diagnosis. One case was asymptomatic and two presented mild symptoms. Two infected individuals from different households caring viruses with additional amino acid substitutions ORF7a P45L and ORF1a T1055A compared to the Mu virus reference sequence. One patient presented IgG levels. Our results highlight that genomic surveillance for SARS-CoV-2 variants can assist in detecting the emergency of SARS-CoV-2 variants in the community, before its identification in other parts of the country.


Assuntos
COVID-19 , SARS-CoV-2 , Brasil/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Imunoglobulina G , Estudos Prospectivos , SARS-CoV-2/genética , Conduta Expectante
19.
Toxins (Basel) ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35202104

RESUMO

A hundred and twenty years ago, the Butantan Institute was founded by the Brazilian physician and scientist Vital Brazil, combining, in the same institution, medical research, and the transfer of results to society in the form of health products [...].


Assuntos
Academias e Institutos/história , Toxicologia/história , Peçonhas/toxicidade , Animais , Brasil , História do Século XX , História do Século XXI , Humanos , Internacionalidade/história
20.
Dalton Trans ; 51(9): 3520-3530, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142773

RESUMO

Chlorins are highly interesting compounds due to their spectroscopic properties in both UV-Vis and NIR regions. Upon coordination to a metal ion, the corresponding metallochlorins exhibit more valuable physicochemical properties that enable a broader range of applications, such as in photodynamic therapy (PDT), water splitting catalysis, optical sensor devices and dye-sensitized solar cells. Synthetic chemistry has been in a continuous quest to fulfil most green chemistry requirements through the development of efficient reactions. Being a heating process that does not depend on heat transfer to the reaction medium, ohmic heating accomplishes the mentioned requirements and allows a fast and uniform heating regime thanks to the ionic conductivity of the reaction medium. Herein, we report the metallation of pyrrolidine- and isoxazolidine-fused chlorins with Zn(II), Cu(II) and Pd(II) salts by ohmic heating, using non-toxic aqueous solutions, and their corresponding physico-chemical characterization. All pyrrolidine-fused chlorins showed higher yields, when compared with isoxazolidine ones. From the thermogravimetric analysis performed it is possible to infer that the metal enhances the steadiness of the macrocycle, making it easier to cause the thermal decomposition of the pyrrolidine- and isoxazolidine-fused chlorins. The Zn(II) complexes showed high absorption in the NIR spectral region, a low fluorescence quantum yield and a short excited singlet state, which indicate the high efficiency of intersystem crossing to the triplet state, making them very promising candidates as photosensitizers for PDT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...