Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dev Orig Health Dis ; 13(2): 231-243, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33941306

RESUMO

Maternal nutrition is critical in mammalian development, influencing the epigenetic reprogramming of gametes, embryos, and fetal programming. We evaluated the effects of different levels of sulfur (S) and cobalt (Co) in the maternal diet throughout the pre- and periconceptional periods on the biochemical and reproductive parameters of the donors and the DNA methylome of the progeny in Bos indicus cattle. The low-S/Co group differed from the control with respect to homocysteine, folic acid, B12, insulin growth factor 1, and glucose. The oocyte yield was lower in heifers from the low S/Co group than that in the control heifers. Embryos from the low-S/Co group exhibited 2320 differentially methylated regions (DMRs) across the genome compared with the control embryos. We also characterized candidate DMRs linked to the DNMT1 and DNMT3B genes in the blood and sperm cells of the adult progeny. A DMR located in DNMT1 that was identified in embryos remained differentially methylated in the sperm of the progeny from the low-S/Co group. Therefore, we associated changes in specific compounds in the maternal diet with DNA methylation modifications in the progeny. Our results help to elucidate the impact of maternal nutrition on epigenetic reprogramming in livestock, opening new avenues of research to study the effect of disturbed epigenetic patterns in early life on health and fertility in adulthood. Considering that cattle are physiologically similar to humans with respect to gestational length, our study may serve as a model for studies related to the developmental origin of health and disease in humans.


Assuntos
Cobalto , Epigenoma , Animais , Bovinos , Cobalto/metabolismo , Metilação de DNA , Feminino , Mamíferos , Oócitos/metabolismo , Enxofre/metabolismo
2.
J Anim Sci Technol ; 61(2): 61-68, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31333863

RESUMO

The hG-CSF (human Granulocyte Colony-Stimulating Factor) is a growth and stimulation factor capable of inducing the proliferation of bone marrow cells, several types of leukocytes, among other hematopoietic tissue cells. hG-CSF is used in used to treat anomalies that reder a small number of circulating white blood cells, which may compromise the immune defenses of the affected person. For these reasons, the production of hG-CSF in a bioreactor system using the mammary gland of genetic modified animals is a possibility of adding value to the bovine genetic material and reducing the costs of hG-CSF production in pharmaceutical industry. In this study, we aimed the production of transgenic hG-CSF bovine through the lipofection of bovine primary fibroblasts with an hG-CSF expression cassette and cloning these fibroblasts by the somatic cell nuclear transfer (SCNT) technique. The bovine fibroblasts transfected with the hG-CSF cassette presented a stable insertion of this construct into their genome and were efficiently synchronized to G0/G1 cell cycle stage. The transgenic fibroblasts were cloned by SCNT and produced 103 transferred embryos and 2 pregnancies, one of which reached 7 months of gestation.

3.
Cryobiology ; 67(2): 137-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770514

RESUMO

Even though sheep embryo cryopreservation is a commonly used procedure the survival and pregnancy outcomes can vary greatly. This study investigated whether cryopreservation was causing subtle changes in ultrastructure, mitochondrial activity or cytoskeletal integrity. Sheep embryos were either slow cooled in 1.5 M EG (n = 22), or vitrified in 20% EG + 20% DMSO with 0.5 M sucrose in Open Pulled Straws (OPS) (n = 24). One hour after warming the cryopreserved embryos differed from control embryos in that they had no mitochondrial activity combined with cytoskeletal disorganization and large vesicles. Vitrified embryos also showed many points of cytoskeleton disruption. Ultrastructural alterations resulting from actin filaments disorganization were observed in both cryopreserved groups. This includes areas presenting no cytoplasmic organelles, Golgi complex located far from the nucleus and a decrease of specialized intercellular junctions. Additionally, large vesicles were observed in vitrified morulae and early blastocysts. The alterations after cryopreservation were proportional to embryo quality as assessed using the stereomicroscope. Even in the absence of mitochondrial activity, grade I and II cryopreserved embryos contained mitochondria with normal ultrastructure. Embryos classified as grade I or II in the stereomicroscope revealed mild ultrastructural alterations, meaning that this tool is efficient to evaluate embryos after cryopreservation.


Assuntos
Criopreservação/veterinária , Embrião de Mamíferos/ultraestrutura , Ovinos/embriologia , Vitrificação , Animais , Criopreservação/métodos , Crioprotetores/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Dimetil Sulfóxido/metabolismo , Embrião de Mamíferos/metabolismo , Etilenoglicol/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...