RESUMO
Essential oils' active compounds present great potential as a bactericidal agent in active packaging. The encapsulation in polymeric walls promotes their protection against external agents besides allowing controlled release. This work produced PLA capsules with three different active compounds, Cinnamomum cassia essential oil (CEO), eugenol (EEO), and linalool (LEO), by emulsion solvent evaporation method. Characterizations included SEM, Zeta potential, FTIR, TGA, and bactericidal activity against E. coli, S. aureus, L. monocytogenes, and Salmonella. The active compounds showed microbiological activity against all pathogens. CEO capsules showed superior colloidal stability. The active compounds' presence in all capsules was confirmed by FTIR analysis, with possible physical interaction between CEO, EEO, and the polymeric matrix, while LEO had a possible chemical interaction with PLA. TGA analysis showed a plasticizing effect of active compounds, and the loading efficiency was 39.7%, 50.7%, and 22.3% for CEO-PLA, EEO-PLA, and LEO-PLA, respectively. The capsules presented two release stages, sustaining activity against pathogens for up to 28 days, indicating a satisfactory internal morphology. This study presented methodology for encapsulation of antimicrobial compounds that can be suitable for active food packaging. CEO-PLA capsules regarding stability and antibacterial activity achieved the best results.