Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39143904

RESUMO

The aim of this study was to investigate whether baseline values and acute and chronic changes in androgen receptors (AR) markers, including total AR, cytoplasmic (cAR) and nuclear (nAR) fractions, as well as DNA-binding activity (AR-DNA), are involved in muscle hypertrophy responsiveness by comparing young nonresponder and responder individuals. After 10 weeks of resistance training (RT), participants were identified as nonresponders using two typical errors (TE) obtained through two muscle cross-sectional area (mCSA) ultrasound measurements (2×TE; 4.94%), and the highest responders within our sample were numerically matched. Muscle biopsies were performed at baseline, 24h after the first RT session (acute responses) and 96h after the last session (chronic responses). AR, cAR and nAR were analyzed using Western blotting, and AR-DNA using an ELISA-oligonucleotide assay. Twelve participants were identified as nonresponders (ΔmCSA: -1.32%), and twelve as responders (ΔmCSA: 21.35%). There were no baseline differences between groups in mCSA, AR, cAR, nAR or AR-DNA (P > 0.05). For acute responses, there was a significant difference between nonresponders (+19.5%) and responders (-14.4%) in AR-DNA (ES = -1.39; 95% CI: -2.53 to -0.16; P = 0.015). There were no acute between-group differences in any other AR markers (P > 0.05). No significant differences between groups were observed in chronic responses across any AR markers (P > 0.05). Nonresponders and responders presented similar baseline, acute and chronic results for the majority of the AR markers. Thus, our findings do not support the influence of AR markers on muscle hypertrophy responsiveness to RT in untrained individuals.

2.
Med Sci Sports Exerc ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934511

RESUMO

PURPOSE: Androgen receptor (AR) expression and signaling has been regarded as a mechanism for regulating muscle hypertrophy. However, little is known about the associations between acute and chronic changes in skeletal muscle total AR, cytoplasmic AR (cAR), nuclear AR (nAR) and AR DNA-binding (AR-DNA) induced by resistance training (RT) and hypertrophy outcomes in women and men. This study aimed to investigate the acute and chronic effects of RT on skeletal muscle total AR, cAR, nAR contents and AR-DNA in women and men. Additionally, we investigated whether these acute and chronic changes in these markers were associated with muscle hypertrophy in both sexes. METHODS: Nineteen women and 19 men underwent 10 weeks of RT. Muscle biopsies were performed at baseline, 24 h after the first RT session and 96-120 h after the last session. AR, cAR and nAR were analyzed using Western blotting, and AR-DNA using an ELISA-oligonucleotide assay. Fiber cross-sectional area (fCSA) was analyzed through immunohistochemistry and muscle cross-sectional area (mCSA) by ultrasound. RESULTS: At baseline, men demonstrated greater nAR than women. Baseline cAR was significantly associated with type II fCSA hypertrophy in men. Acutely, both sexes decreased AR and cAR, whereas men demonstrated greater decreases in nAR. After 10 weeks of RT, AR and nAR remained unchanged, men demonstrated greater cAR compared to women, and both sexes decreased AR-DNA activity. Acute and chronic changes in AR markers did not correlate with muscle hypertrophy (type I/II fCSA and mCSA) in women or men. CONCLUSIONS: Baseline cAR content may influence hypertrophy in men, while neither RT-induced acute nor chronic changes in AR, cAR, nAR, and AR-DNA are associated with muscle hypertrophy in women or men.

4.
Eur J Appl Physiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653795

RESUMO

PURPOSE: Resistance training (RT) induces muscle growth at varying rates across RT phases, and evidence suggests that the muscle-molecular responses to training bouts become refined or attenuated in the trained state. This study examined how proteolysis-related biomarkers and extracellular matrix (ECM) remodeling factors respond to a bout of RT in the untrained (UT) and trained (T) state. METHODS: Participants (19 women and 19 men) underwent 10 weeks of RT. Biopsies of vastus lateralis were collected before and after (24 h) the first (UT) and last (T) sessions. Vastus lateralis cross-sectional area (CSA) was assessed before and after the experimental period. RESULTS: There were increases in muscle and type II fiber CSAs. In both the UT and T states, calpain activity was upregulated and calpain-1/-2 protein expression was downregulated from Pre to 24 h. Calpain-2 was higher in the T state. Proteasome activity and 20S proteasome protein expression were upregulated from Pre to 24 h in both the UT and T. However, proteasome activity levels were lower in the T state. The expression of poly-ubiquitinated proteins was unchanged. MMP activity was downregulated, and MMP-9 protein expression was elevated from Pre to 24 h in UT and T. Although MMP-14 protein expression was acutely unchanged, this marker was lower in T state. TIMP-1 protein levels were reduced Pre to 24 h in UT and T, while TIMP-2 protein levels were unchanged. CONCLUSION: Our results are the first to show that RT does not attenuate the acute-induced response of proteolysis and ECM remodeling-related biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA