Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Breed Genet ; 141(3): 291-303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38062881

RESUMO

Feed efficiency plays a major role in the overall profitability and sustainability of the beef cattle industry, as it is directly related to the reduction of the animal demand for input and methane emissions. Traditionally, the average daily feed intake and weight gain are used to calculate feed efficiency traits. However, feed efficiency traits can be analysed longitudinally using random regression models (RRMs), which allow fitting random genetic and environmental effects over time by considering the covariance pattern between the daily records. Therefore, the objectives of this study were to: (1) propose genomic evaluations for dry matter intake (DMI), body weight gain (BWG), residual feed intake (RFI) and residual weight gain (RWG) data collected during an 84-day feedlot test period via RRMs; (2) compare the goodness-of-fit of RRM using Legendre polynomials (LP) and B-spline functions; (3) evaluate the genetic parameters behaviour for feed efficiency traits and their implication for new selection strategies. The datasets were provided by the EMBRAPA-GENEPLUS beef cattle breeding program and included 2920 records for DMI, 2696 records for BWG and 4675 genotyped animals. Genetic parameters and genomic breeding values (GEBVs) were estimated by RRMs under ssGBLUP for Nellore cattle using orthogonal LPs and B-spline. Models were compared based on the deviance information criterion (DIC). The ranking of the average GEBV of each test week and the overall GEBV average were compared by the percentage of individuals in common and the Spearman correlation coefficient (top 1%, 5%, 10% and 100%). The highest goodness-of-fit was obtained with linear B-Spline function considering heterogeneous residual variance. The heritability estimates across the test period for DMI, BWG, RFI and RWG ranged from 0.06 to 0.21, 0.11 to 0.30, 0.03 to 0.26 and 0.07 to 0.27, respectively. DMI and RFI presented within-trait genetic correlations ranging from low to high magnitude across different performance test-day. In contrast, BWG and RWG presented negative genetic correlations between the first 3 weeks and the other days of performance tests. DMI and RFI presented a high-ranking similarity between the GEBV average of week eight and the overall GEBV average, with Spearman correlations and percentages of individuals selected in common ranging from 0.95 to 1.00 and 93 to 100, respectively. Week 11 presented the highest Spearman correlations (ranging from 0.94 to 0.98) and percentages of individuals selected in common (ranging from 85 to 94) of BWG and RWG with the average GEBV of the entire period of the test. In conclusion, the RRM using linear B-splines is a feasible alternative for the genomic evaluation of feed efficiency. Heritability estimates of DMI, RFI, BWG and RWG indicate enough additive genetic variance to achieve a moderate response to selection. A new selection strategy can be adopted by reducing the performance test to 56 days for DMI and RFI selection and 77 days for BWG and RWG selection.


Assuntos
Genoma , Genômica , Humanos , Bovinos/genética , Animais , Fenótipo , Aumento de Peso/genética , Genótipo , Ingestão de Alimentos/genética , Ração Animal
2.
Meat Sci ; 209: 109402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056170

RESUMO

Genome association studies (GWAS) provides knowledge about the genetic architecture of beef-related traits that allow linking the target phenotype to genomic information aiding breeding decision. Thus, the present study aims to uncover the genetic mechanism involved in carcass (REA: rib eye area, BF: backfat thickness, and HCW: hot carcass weight) and meat quality traits (SF: shear-force, MARB: marbling score, and IMF: intramuscular fat content) in Nellore cattle. For this, 6910 young bulls with phenotypic information and 23,859 animals genotyped with 435 k markers were used to perform the weighted single-step GBLUP (WssGBLUP) approach, considering two iterations. The top 10 genomic regions explained 8.13, 11.81, and 9.58% of the additive genetic variance, harboring a total of 119, 143, and 95 positional candidate genes for REA, BF, and HCW, respectively. For meat quality traits, the top 10 windows explained a large proportion of the total genetic variance for SF (14.95%), MARB (17.56%), and IMF (21.41%) surrounding 92, 155, and 111 candidate genes, respectively. Relevant candidate genes (CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX, CARTPT, and PLA2G16) are related to physiological aspects affecting growth, carcass, meat quality, feed intake, and reproductive traits by signaling pathways controlling muscle control, key signal metabolic molecules INS / IGF-1 pathway, lipid metabolism, and adipose tissue development. The GWAS results provided insights into the genetic control of the traits studied and the genes found are potential candidates to be used in the improvement of carcass and meat quality traits.


Assuntos
Carne , Músculo Esquelético , Bovinos/genética , Animais , Masculino , Carne/análise , Fenótipo , Genótipo , Músculo Esquelético/fisiologia , Redes e Vias Metabólicas , Polimorfismo de Nucleotídeo Único
3.
BMC Genom Data ; 24(1): 76, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093199

RESUMO

BACKGROUND: Non-additive genetic effects are often ignored in livestock genetic evaluations. However, fitting them in the models could improve the accuracy of genomic breeding values. Furthermore, non-additive genetic effects contribute to heterosis, which could be optimized through mating designs. Traits related to fitness and adaptation, such as heat tolerance, tend to be more influenced by non-additive genetic effects. In this context, the primary objectives of this study were to estimate variance components and assess the predictive performance of genomic prediction of breeding values based on alternative models and two independent datasets, including performance records from a purebred pig population and heat tolerance indicators recorded in crossbred lactating sows. RESULTS: Including non-additive genetic effects when modelling performance traits in purebred pigs had no effect on the residual variance estimates for most of the traits, but lower additive genetic variances were observed, especially when additive-by-additive epistasis was included in the models. Furthermore, including non-additive genetic effects did not improve the prediction accuracy of genomic breeding values, but there was animal re-ranking across the models. For the heat tolerance indicators recorded in a crossbred population, most traits had small non-additive genetic variance with large standard error estimates. Nevertheless, panting score and hair density presented substantial additive-by-additive epistatic variance. Panting score had an epistatic variance estimate of 0.1379, which accounted for 82.22% of the total genetic variance. For hair density, the epistatic variance estimates ranged from 0.1745 to 0.1845, which represent 64.95-69.59% of the total genetic variance. CONCLUSIONS: Including non-additive genetic effects in the models did not improve the accuracy of genomic breeding values for performance traits in purebred pigs, but there was substantial re-ranking of selection candidates depending on the model fitted. Except for panting score and hair density, low non-additive genetic variance estimates were observed for heat tolerance indicators in crossbred pigs.


Assuntos
Lactação , Termotolerância , Suínos/genética , Animais , Feminino , Modelos Genéticos , Genômica , Alelos
4.
Front Genet ; 14: 1118308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662838

RESUMO

Beef cattle affected by feet and legs malformations (FLM) cannot perform their productive and reproductive functions satisfactorily, resulting in significant economic losses. Accelerated weight gain in young animals due to increased fat deposition can lead to ligaments, tendon and joint strain and promote gene expression patterns that lead to changes in the normal architecture of the feet and legs. The possible correlated response in the FLM due to yearling weight (YW) selection suggest that this second trait could be used as an indirect selection criterion. Therefore, FLM breeding values and the genetic correlation between FLM and yearling weight (YW) were estimated for 295,031 Nellore animals by fitting a linear-threshold model in a Bayesian approach. A genome-wide association study was performed to identify genomic windows and positional candidate genes associated with FLM. The effects of single nucleotide polymorphisms (SNPs) on FLM phenotypes (affected or unaffected) were estimated using the weighted single-step genomic BLUP method, based on genotypes of 12,537 animals for 461,057 SNPs. Twelve non-overlapping windows of 20 adjacent SNPs explaining more than 1% of the additive genetic variance were selected for candidate gene annotation. Functional and gene prioritization analysis of candidate genes identified six genes (ATG7, EXT1, ITGA1, PPARD, SCUBE3, and SHOX) that may play a role in FLM expression due to their known role in skeletal muscle development, aberrant bone growth, lipid metabolism, intramuscular fat deposition and skeletogenesis. Identifying genes linked to foot and leg malformations enables selective breeding for healthier herds by reducing the occurrence of these conditions. Genetic markers can be used to develop tests that identify carriers of these mutations, assisting breeders in making informed breeding decisions to minimize the incidence of malformations in future generations, resulting in greater productivity and animal welfare.

5.
Int J Biometeorol ; 67(7): 1273-1277, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191730

RESUMO

Heat stress negatively affects livestock, with undesirable effects on animals' production and reproduction. Temperature and humidity index (THI) is a climatic variable used worldwide to study the effect of heat stress on farm animals. Temperature and humidity data can be obtained in Brazil through the National Institute of Meteorology (INMET), but complete data may not be available due to temporary failures on weather stations. An alternative to obtaining meteorological data is the National Aeronautics and Space Administration Prediction of Worldwide Energy Resources (NASA POWER) satellite-based weather system. We aimed to compare THI estimates obtained from INMET weather stations and NASA POWER meteorological information sources using Pearson correlation and linear regression. After quality check, data from 489 INMET weather stations were used. The hourly, average daily and maximum daily THI were evaluated. We found greater correlations and better regression evaluation metrics when average daily THI values were considered, followed by maximum daily THI, and hourly THI. NASA POWER satellite-based weather system is a suitable tool for obtaining the average and maximum THI values using information collected from Brazil, showing high correlations with THI estimates from INMET and good regression evaluation metrics, and can assist studies that aim to analyze the impact of heat stress on livestock production in Brazil, providing additional data to complement the existing information available in the INMET database.


Assuntos
Transtornos de Estresse por Calor , Meteorologia , Animais , Estados Unidos , Feminino , Umidade , Temperatura , Brasil , United States National Aeronautics and Space Administration , Tempo (Meteorologia) , Transtornos de Estresse por Calor/veterinária , Temperatura Alta , Lactação , Leite
6.
J Anim Breed Genet ; 140(2): 185-197, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36321505

RESUMO

Characterized by the incomplete development of the germinal epithelium of the seminiferous tubules, Testicular hypoplasia (TH) leads to decreased sperm concentration, increased morphological changes in sperm and azoospermia. Economic losses resulting from the disposal of affected bulls reduce the efficiency of meat production systems. A genome-wide association study and functional analysis were performed to identify genomic windows and the underlying positional candidate genes associated with TH in Nellore cattle. Phenotypic and pedigree data from 207,195 animals and genotypes (461,057 single nucleotide polymorphism, SNP) from 17,326 sires were used in this study. TH was evaluated as a binary trait measured at 18 months of age. A possible correlated response on TH resulting from the selection for scrotal circumference was evaluated by using a two-trait analysis. Thus, estimated breeding values were calculated by fitting a linear-threshold animal model in a Bayesian approach. The SNP effects were estimated using the weighted single-step genomic BLUP method. Twelve non-overlapping windows of 20 adjacent SNP that explained more than 1% of the additive genetic variance were selected for candidate gene annotation. Functional and gene prioritization analysis of the candidate genes identified genes (KHDRBS3, GPX5, STAR, ERLIN2), which might play an important role in the expression of TH due to their known roles in the spermatogenesis process, synthesis of steroids and lipid metabolism.


Assuntos
Estudo de Associação Genômica Ampla , Sêmen , Bovinos/genética , Masculino , Animais , Estudo de Associação Genômica Ampla/veterinária , Teorema de Bayes , Sêmen/fisiologia , Espermatozoides , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
Trop Anim Health Prod ; 55(1): 14, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538196

RESUMO

This study is aimed at estimating genetic parameters, effective population size, inbreeding, and inbreeding depression for birth weight, weaning weight, and average pre-weaning daily weight gain (ADG) in Piau pigs. We used information from 3841 Piau pigs, and four linear models were fitted in single-trait analyses, including or excluding maternal genetic effect, common litter effect, or a combination. The adjustments of the models were compared using the likelihood ratio test, in which the model that presented the best fit for each trait was used to estimate the (co)variance components. The inbreeding depression effect was evaluated using a linear model that included the fixed effects of sex, parity order, contemporary group, and inbreeding coefficient as a fixed covariate. The weights at birth and weaning showed low direct heritabilities (0.08 and 0.05, respectively), while the ADG showed moderate heritability (0.20). The weight at birth showed high genetic correlations with the weight at weaning (0.90) and the ADG (0.82). The weight at weaning and the ADG also showed a high genetic correlation (0.99). There was an inbreeding increase over the generations and a reduction in the effective population size. In the last generation evaluated, all the animals were inbred, the average inbreeding coefficient was 0.07, and the effective population size was 20.8. A significant inbreeding effect on ADG was observed, where an increase of 1% in the inbreeding coefficient resulted in a decrease of 0.005 g in the ADG. Thus, increasing effective population size is mandatory for controlling inbreeding and reducing the loss of variability in this Piau pig population.


Assuntos
Depressão por Endogamia , Gravidez , Feminino , Suínos/genética , Animais , Endogamia , Parto , Peso ao Nascer/genética , Paridade , Desmame , Aumento de Peso/genética
8.
Animals (Basel) ; 12(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049797

RESUMO

Increasing productivity through continued animal genetic improvement is a crucial part of implementing sustainable livestock intensification programs. In Zebu cattle, the lack of sexual precocity is one of the main obstacles to improving beef production efficiency. Puberty-related traits are complex, but large-scale data sets from different "omics" have provided information on specific genes and biological processes with major effects on the expression of such traits, which can greatly increase animal genetic evaluation. In addition, genetic parameter estimates and genomic predictions involving sexual precocity indicator traits and productive, reproductive, and feed-efficiency related traits highlighted the feasibility and importance of direct selection for anticipating heifer reproductive life. Indeed, the case study of selection for sexual precocity in Nellore breeding programs presented here show that, in 12 years of selection for female early precocity and improved management practices, the phenotypic means of age at first calving showed a strong decreasing trend, changing from nearly 34 to less than 28 months, with a genetic trend of almost -2 days/year. In this period, the percentage of early pregnancy in the herds changed from around 10% to more than 60%, showing that the genetic improvement of heifer's sexual precocity allows optimizing the productive cycle by reducing the number of unproductive animals in the herd. It has a direct impact on sustainability by better use of resources. Genomic selection breeding programs accounting for genotype by environment interaction represent promising tools for accelerating genetic progress for sexual precocity in tropical beef cattle.

9.
J Anim Breed Genet ; 138(3): 349-359, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33073869

RESUMO

We investigated the applicability of ssGBLUP methodology under the autoregressive model (H-AR) for genomic evaluation of longitudinal reproductive traits in Portuguese Holstein cattle. The genotype data of 1,230 bulls and 1,645 cows were considered in our study. The reproductive traits evaluated were interval from calving to first service (ICF), calving interval (CI) and daughter pregnancy rate (DPR) measured during the first four parities. Reliability and rank correlation were used to compare the H-AR with the traditional pedigree-based autoregressive models (A-AR). In addition, a validation study was performed considering different scenarios. Higher genomic estimated breeding values (GEBV) reliabilities were obtained for genotyped bulls when evaluated under the H-AR model, with emphasis on bulls with less than 9 daughters. For this group, the averages of GEBV reliabilities corresponded to 0.62, 0.69 and 0.62 for ICF, CI and DPR, respectively, while the averages obtained by the A-AR model were 0.27, 0.15 and 0.16. The validation study was favourable to H-AR. The best results were observed in the scenario where genotyped cows were combined with contributing bulls (genotyped bulls with daughter or relationship information in the population). Overall, the results suggest that ssGBLUP methodology under the autoregressive model is a feasible and applicable approach to be used in genomic analyses of longitudinal reproductive traits in Portuguese Holstein cattle.


Assuntos
Genoma , Animais , Bovinos , Feminino , Genômica , Genótipo , Masculino , Modelos Genéticos , Linhagem , Fenótipo , Portugal , Gravidez , Reprodutibilidade dos Testes
10.
Reprod Domest Anim ; 56(3): 391-399, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33283338

RESUMO

Reproductive efficiency is major determinant of the dairy herd profitability. Thus, reproductive traits have been widely used as selection objectives in the current dairy cattle breeding programs. We aimed to evaluate strategies to model days open (DO), calving interval (CI) and daughter pregnancy rate (DPR) in Brazilian Holstein cattle. These reproductive traits were analysed by the autoregressive (AR) model and compared with classical repeatability (REP) model using 127,280, 173,092 and 127,280 phenotypic records, respectively. The first three calving orders of cows from 1,469 Holstein herds were used here. The AR model reported lower values for Akaike Information Criteria and Mean Square Errors, as well as larger model probabilities, for all evaluated traits. Similarly, larger additive genetic and lower residual variances were estimated from AR model. Heritability and repeatability estimates were similar for both models. Heritabilities for DO, CI and DPR were 0.04, 0.07 and 0.04; and 0.05, 0.06 and 0.04 for AR and REP models, respectively. Individual EBV reliabilities estimated from AR for DO, CI and DPR were, in average, 0.29, 0.30 and 0.29 units higher than those obtained from REP model. Rank correlation between EBVs obtained from AR and REP models considering the top 10 bulls ranged from 0.72 to 0.76; and increased from 0.98 to 0.99 for the top 100 bulls. The percentage of coincidence between selected bulls from both methods increased over the number of bulls included in the top groups. Overall, the results of model-fitting criteria, genetic parameters estimates and EBV predictions were favourable to the AR model, indicating that it may be applied for genetic evaluation of longitudinal reproductive traits in Brazilian Holstein cattle.


Assuntos
Bovinos/genética , Fertilidade/genética , Reprodução/genética , Animais , Brasil , Cruzamento , Bovinos/fisiologia , Indústria de Laticínios/métodos , Feminino , Masculino , Modelos Estatísticos , Gravidez , Taxa de Gravidez
11.
J Appl Genet ; 61(3): 465-476, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32607783

RESUMO

This study focused on the identification of QTL regions, candidate genes, and network related genes based on the first 3 lactations (LAC3) of milk, fat, and protein yields, and somatic cell score (SCS) in Portuguese Holstein cattle. Additionally, the results were compared with those from only first lactation (LAC1) data. The analyses were performed using the weighted single-step GWAS under an autoregressive test-day (TD) multiple lactations model. A total of 11,434,294 and 4,725,673 TD records from LAC3 and LAC1, respectively, including 38,323 autosomal SNPs and 1338 genotyped animals were used in GWAS analyses. A total of 51 (milk), 5 (fat), 24 (protein), and 4 (SCS) genes were associated to previously annotated relevant QTL regions for LAC3. The CACNA2D1 at BTA4 explained the highest proportion of genetic variance respectively for milk, fat, and protein yields. For SCS, the TRNAG-CCC at BTA14, MAPK10, and PTPN3 genes, both at BTA6 were considered important candidate genes. The accessed network refined the importance of the reported genes. CACNA2D1 regulates calcium density and activation/inactivation kinetics of calcium transport in the mammary gland; whereas TRNAG-CCC, MAPK10, and PTPN3 are directly involved with inflammatory processes widely derived from mastitis. In conclusion, potential candidate genes (TRNAG-CCC, MAPK10, and PTPN3) associated with somatic cell were highlighted, which further validation studies are needed to clarify its mechanism action in response to mastitis. Moreover, most of the candidate genes identified were present in both (LAC3 and LAC1) for milk, fat and protein yields, except for SCS, in which no candidate genes were shared between LAC3 and LAC1. The larger phenotypic information provided by LAC3 dataset was more effective to identify relevant genes, providing a better understanding of the genetic architecture of these traits over all lactations simultaneously.


Assuntos
Redes Reguladoras de Genes , Estudos de Associação Genética/veterinária , Lactação/genética , Leite , Locos de Características Quantitativas , Animais , Bovinos , Feminino , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Portugal
12.
J Anim Breed Genet ; 137(3): 305-315, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31813191

RESUMO

Autoregressive (AR) and random regression (RR) models were fitted to test-day records from the first three lactations of Brazilian Holstein cattle with the objective of comparing their efficiency for national genetic evaluations. The data comprised 4,142,740 records of milk yield (MY) and somatic cell score (SCS) from 274,335 cows belonging to 2,322 herds. Although heritabilities were similar between models and traits, additive genetic variance estimates using AR were 7.0 (MY) and 22.2% (SCS) higher than those obtained from RR model. On the other hand, residual variances were lower in both traits when estimated through AR model. The rank correlation between EBV obtained from AR and RR models was 0.96 and 0.94 (MY) and 0.97 and 0.95 (SCS), respectively, for bulls (with 10 or more daughters) and cows. Estimated annual genetic gains for bulls (cows) obtained using AR were 46.11 (49.50) kg for MY and -0.019 (-0.025) score for SCS; whereas using RR these values were 47.70 (55.56) kg and -0.022 (-0.028) score. Akaike information criterion was lower for AR in both traits. Although AR model is more parsimonious, RR model assumes genetic correlations different from the unity within and across lactations. Thus, when these correlations are relatively high, these models tend to yield to similar predictions; otherwise, they will differ more and RR model would be theoretically sounder.


Assuntos
Cruzamento , Lactação/genética , Leite , Animais , Brasil , Bovinos , Feminino , Lactação/fisiologia , Masculino , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...