Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(20): 12442-12456, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575028

RESUMO

Fullerene-based polymers and oligomers combined with non-fullerene acceptors show extremely high efficiencies in organic photovoltaic devices. Furthermore, fullerene-based materials are of interest for use in anti-cancer and anti-viral treatments, where their presence can enhance the efficacy of medication considerably. Therefore, it remains important to understand their morphology and electronic properties to improve devices and technological applications. The main goal of this study is to prepare and characterize Langmuir and Langmuir-Schaefer films of PCBM-based materials to investigate the influence of different solvents such as chloroform, toluene, and xylene, and co-components on their morphology. PCBM-based materials were thus studied either alone or in mixtures with a polythiophene derivative (poly(3-hexythiophene), P3HT) commonly used in organic photovoltaic devices. The formation of Langmuir films was studied using surface pressure isotherms and Brewster's angle microscopy (BAM), where the homogeneity, phase behavior, and morphology of the films were investigated. In addition, Langmuir-Schaefer films were characterized by UV-visible absorption spectroscopy, atomic force microscopy (AFM), and Raman spectroscopy, providing information on the morphology of the solid films. This study has shown that it is possible to successfully fabricate Langmuir and Langmuir-Schaefer films of PCBM and PCBM-based oligomers and polymers, both pure and in mixtures with P3HT, to compare their organization, roughness, and optical properties. With the Langmuir films, it was possible to estimate the area of the molecules and visualize their aggregation through BAM images, establishing a relationship between the area occupied by these materials and the solvent used. All characterization techniques corroborate that the use of chloroform significantly reduced the roughness of the LS films mixed with P3HT and also presented a higher ordering compared to films prepared with xylene solutions.

2.
Nanotechnology ; 31(31): 315712, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32311686

RESUMO

Low-bandgap polymers are widely used as p-type components in photoactive layers of organic solar cells, due to their ability to capture a large portion of the solar spectrum. The comprehension of their supramolecular assembly is crucial in achieving high-performance organic electronic devices. Here we synthezed two exemplar low-bandgap cyclopentadithiophene (CPDT):diketopyrrolopyrrole (DPP)-based polymers, with either a twelve carbon (C12) or a tri etyleneglycol (TEG) side chains on the DPP units (respectively denoted PCPDTDPP_C12 and PCPDTDPP_TEG). We deposited Langmuir-Schaefer films of these polymers blended with the widely used electron donor material [6,6]-phenyl-C61-butyric-acid methyl ester (PCBM). We then characterized the conformational, optical and morphological properties of these films. From the monolayers to the solid films, we observed distinct self-organization and surface properties for each polymer due to the distinct nature of their side chains. Emphasizing their attraction interactions with PCBM and the phase transitions according to the surface pressure. The elements amount on the surface, calculated through the XPS, gave us a good insight on the polymers' conformations. Through UV-visible absorption spectroscopy, the improvement in the PCPDTDPP film ordering upon PCBM addition is evident and we saw the contribution of the polymer units on the optical response. Chemical attributions of the polymers were assigned using FTIR Spectroscopy and Raman Scattering, revealing the physical interaction after mixing the materials. We showed that it is possible to build nanostructured PCPDTDPPs films with a high control of their molecular properties through an understanding of their self-assembly and interactions with an n-type material.

3.
Nanotechnology ; 30(32): 325703, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30991378

RESUMO

Polythiophene thin films are widely studied for applications in organic electronics. However, some comparisons are still missing, regarding distinct deposition techniques and regioregularity. Here regioregular and regiorandom alkyl-substituted polythiophene derivatives (P3ATs) were deposited on solid substrates using both Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques. The main goal was to verify the possible influence of the regioregularity as well the deposition technique on their optical, electrical and electrochemical properties. LB and LS films of regioregular and regiorandom poly(3-butylthiophene) (P3BT) and poly(3-octylthiophene) (P3OT) were deposited onto glass/Indium-Tin-Oxide) substrates and characterized by UV-visible optical spectroscopy, atomic force microscopy, cyclic voltammetry, and conductivity measurements. The results demonstrated the influence of the deposition technique on the electrical outcome, moreover, the regioregularity affected all the performed characterizations. In addition, this paper may be useful to understand how the amphiphilic molecule addition affected the film properties of regioregular and regiorandom P3ATs, particularly the energy diagram provided by the electrochemical and absorption features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...