Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1385901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721146

RESUMO

In mammals, the development of male or female gonads from fetal bipotential gonads depends on intricate genetic networks. Changes in dosage or temporal expression of sex-determining genes can lead to differences of gonadal development. Two rare conditions are associated with disruptions in ovarian determination, including 46,XX testicular differences in sex development (DSD), in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD, characterized by the coexistence of ovarian and testicular tissue in the same individual. Several mechanisms have been identified that may contribute to the development of testicular tissue in XX gonads. This includes translocation of SRY to the X chromosome or an autosome. In the absence of SRY, other genes associated with testis development may be overexpressed or there may be a reduction in the activity of pro-ovarian/antitesticular factors. However, it is important to note that a significant number of patients with these DSD conditions have not yet recognized a genetic diagnosis. This finding suggests that there are additional genetic pathways or epigenetic mechanisms that have yet to be identified. The text will provide an overview of the current understanding of the genetic factors contributing to 46,XX DSD, specifically focusing on testicular and ovotesticular DSD conditions. It will summarize the existing knowledge regarding the genetic causes of these differences. Furthermore, it will explore the potential involvement of other factors, such as epigenetic mechanisms, in developing these conditions.


Assuntos
Testículo , Humanos , Masculino , Testículo/patologia , Testículo/metabolismo , Animais , Feminino , Transtornos 46, XX do Desenvolvimento Sexual/genética , Transtornos 46, XX do Desenvolvimento Sexual/patologia , Diferenciação Sexual/genética , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/patologia
2.
Sex Dev ; 16(1): 55-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34510040

RESUMO

Copy number variations of several genes involved in the process of gonadal determination have been identified as a cause of 46,XY differences of sex development. We report a non-syndromic 14-year-old female patient who was referred with primary amenorrhea, absence of breast development, and atypical genitalia. Her karyotype was 47,XY,+mar/46,XY, and FISH analysis revealed the X chromosome origin of the marker chromosome. Array-CGH data identified a pathogenic 2.0-Mb gain of an Xp21.2 segment containing NR0B1/DAX1 and a 1.9-Mb variant of unknown significance from the Xp11.21p11.1 region. This is the first report of a chromosomal microarray analysis to reveal the genetic content of a small supernumerary marker chromosome detected in a 47,XY,+der(X)/46,XY karyotype in a non-syndromic girl with partial gonadal dysgenesis and gonadoblastoma. Our findings indicate that the mosaic presence of the small supernumerary Xp marker, encompassing the NR0B1/DAX1 gene, may have been the main cause of dysgenetic testes development, although the role of MAGEB and other genes mapped to the Xp21 segment could not be completely ruled out.


Assuntos
Disgenesia Gonadal 46 XY , Gonadoblastoma , Neoplasias Ovarianas , Adolescente , Receptor Nuclear Órfão DAX-1/genética , Variações do Número de Cópias de DNA , Feminino , Disgenesia Gonadal 46 XY/genética , Gonadoblastoma/genética , Humanos , Cariótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA