Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(5): e0041124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38567952

RESUMO

Influenza A virus infection activates the NLRP3 inflammasome, a multiprotein signaling complex responsible for the proteolytic activation and release of the proinflammatory cytokine IL-1ß from monocytes and macrophages. Some influenza A virus (IAV) strains encode a short 90-amino acid peptide (PB1-F2) on an alternative open reading frame of segment 2, with immunomodulatory activity. We recently demonstrated that contemporary IAV PB1-F2 inhibits the activation of NLRP3, potentially by NEK7-dependent activation. PB1-F2 binds to NLRP3 with its C-terminal 50 amino acids, but the exact binding motif was unknown. On the NLRP3 side, the interface is formed through the leucine-rich-repeat (LRR) domain, potentially in conjunction with the pyrin domain. Here, we took advantage of PB1-F2 sequences from IAV strains with either weak or strong NLRP3 interaction. Sequence comparison and structure prediction using Alphafold2 identified a short four amino acid sequence motif (TQGS) in PB1-F2 that defines NLRP3-LRR binding. Conversion of this motif to that of the non-binding PB1-F2 suffices to lose inhibition of NLRP3 dependent IL-1ß release. The TQGS motif further alters the subcellular localization of PB1-F2 and its colocalization with NLRP3 LRR and pyrin domain. Structural predictions suggest the establishment of additional hydrogen bonds between the C-terminus of PB1-F2 and the LRR domain of NLRP3, with two hydrogen bonds connecting to threonine and glutamine of the TQGS motif. Phylogenetic data show that the identified NLRP3 interaction motif in PB1-F2 is widely conserved among recent IAV-infecting humans. Our data explain at a molecular level the specificity of NLRP3 inhibition by influenza A virus. IMPORTANCE: Influenza A virus infection is accompanied by a strong inflammatory response and high fever. The human immune system facilitates the swift clearance of the virus with this response. An essential signal protein in the proinflammatory host response is IL-1b. It is released from inflammatory macrophages, and its production and secretion depend on the function of NLRP3. We had previously shown that influenza A virus blocks NLRP3 activation by the expression of a viral inhibitor, PB1-F2. Here, we demonstrate how this short peptide binds to NLRP3 and provide evidence that a four amino acid stretch in PB1-F2 is necessary and sufficient to mediate this binding. Our data identify a new virus-host interface required to block one signaling path of the innate host response against influenza A virus.


Assuntos
Motivos de Aminoácidos , Vírus da Influenza A , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ligação Proteica , Proteínas Virais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Células HEK293 , Influenza Humana/virologia , Influenza Humana/imunologia , Sequência de Aminoácidos
2.
Proc Natl Acad Sci U S A ; 120(21): e2214936120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192162

RESUMO

Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in trans. TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.


Assuntos
Vírus da Influenza A , Transferrina , Vírus da Influenza A/fisiologia , Internalização do Vírus , Endocitose/fisiologia , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
3.
Front Immunol ; 14: 1072142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761727

RESUMO

Infections with influenza A viruses (IAV) cause seasonal epidemics and global pandemics. The majority of these infections remain asymptomatic, especially among children below five years of age. Importantly, this is a time, when immunological imprinting takes place. Whether early-life infections with IAV affect the development of antimicrobial immunity is unknown. Using a preclinical mouse model, we demonstrate here that silent neonatal influenza infections have a remote beneficial impact on the later control of systemic juvenile-onset and adult-onset infections with an unrelated pathogen, Staphylococcus aureus, due to improved pathogen clearance and clinical resolution. Strategic vaccination with a live attenuated IAV vaccine elicited a similar protection phenotype. Mechanistically, the IAV priming effect primarily targets antimicrobial functions of the developing innate immune system including increased antimicrobial plasma activity and enhanced phagocyte functions and antigen-presenting properties at mucosal sites. Our results suggest a long-term benefit from an exposure to IAV during the neonatal phase, which might be exploited by strategic vaccination against influenza early in life to enforce the host's resistance to later bacterial infections.


Assuntos
Anti-Infecciosos , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos
4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479996

RESUMO

Excessive production of viral glycoproteins during infections poses a tremendous stress potential on the endoplasmic reticulum (ER) protein folding machinery of the host cell. The host cell balances this by providing more ER resident chaperones and reducing translation. For viruses, this unfolded protein response (UPR) offers the potential to fold more glycoproteins. We postulated that viruses could have developed means to limit the inevitable ER stress to a beneficial level for viral replication. Using a relevant human pathogen, influenza A virus (IAV), we first established the determinant for ER stress and UPR induction during infection. In contrast to a panel of previous reports, we identified neuraminidase to be the determinant for ER stress induction, and not hemagglutinin. IAV relieves ER stress by expression of its nonstructural protein 1 (NS1). NS1 interferes with the host messenger RNA processing factor CPSF30 and suppresses ER stress response factors, such as XBP1. In vivo viral replication is increased when NS1 antagonizes ER stress induction. Our results reveal how IAV optimizes glycoprotein expression by balancing folding capacity.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Vírus da Influenza A/genética , Neuraminidase/metabolismo , Células A549 , Retículo Endoplasmático/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
5.
EMBO Rep ; 21(12): e50421, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33180976

RESUMO

Pyroptosis is a fulminant form of macrophage cell death, contributing to release of pro-inflammatory cytokines. In humans, it depends on caspase 1/4-activation of gasdermin D and is characterized by the release of cytoplasmic content. Pathogens apply strategies to avoid or antagonize this host response. We demonstrate here that a small accessory protein (PB1-F2) of contemporary H5N1 and H3N2 influenza A viruses (IAV) curtails fulminant cell death of infected human macrophages. Infection of macrophages with a PB1-F2-deficient mutant of a contemporary IAV resulted in higher levels of caspase-1 activation, cleavage of gasdermin D, and release of LDH and IL-1ß. Mechanistically, PB1-F2 limits transition of NLRP3 from its auto-repressed and closed confirmation into its active state. Consequently, interaction of a recently identified licensing kinase NEK7 with NLRP3 is diminished, which is required to initiate inflammasome assembly.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Humanos , Inflamassomos/genética , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A/genética , Macrófagos , Quinases Relacionadas a NIMA , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose
6.
PLoS One ; 10(4): e0124309, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875362

RESUMO

Topoisomerases are enzymes that alter the topological properties of DNA. Phage T4 encodes its own topoisomerase but it can also utilize host-encoded topoisomerases. Here we characterized 55.2, a phage T4 predicted ORF of unknown function. High levels of expression of the cloned 55.2 gene are toxic in E. coli. This toxicity is suppressed either by increased topoisomerase I expression or by partial inactivation of the ATPase subunit of the DNA gyrase. Interestingly, very low-level expression of 55.2, which is non-lethal to wild type E. coli, prevents the growth of a deletion mutant of the topoisomerase I (topA) gene. In vitro, gp55.2 binds DNA and blocks specifically the relaxation of negatively supercoiled DNA by topoisomerase I. In vivo, expression of gp55.2 at low non-toxic levels alters the steady state DNA supercoiling of a reporter plasmid. Although 55.2 is not an essential gene, competition experiments indicate that it is required for optimal phage growth. We propose that the role of gp55.2 is to subtly modulate host topoisomerase I activity during infection to insure optimal T4 phage yield.


Assuntos
Bacteriófago T4/genética , DNA Topoisomerases Tipo I/metabolismo , Escherichia coli/enzimologia , Fases de Leitura Aberta/genética , Bacteriófago T4/crescimento & desenvolvimento , Bacteriófago T4/fisiologia , Clonagem Molecular , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
J Bacteriol ; 197(3): 542-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404704

RESUMO

Protein export to the bacterial periplasm is achieved by SecYEG, an inner membrane heterotrimer. SecY and SecE are encoded by essential genes, while SecG is not essential for growth under standard laboratory conditions. Using a quantitative and sensitive export assay, we show that SecG plays a critical role for the residual export mediated by mutant signal sequences; the magnitude of this effect is not proportional to the strength of the export defect. In contrast, export mediated by wild-type signal sequences is only barely retarded in the absence of SecG. When probed with mutant signal sequences, secG loss of function mutations display a phenotype opposite to that of prlA mutations in secY. The analysis of secG and prlA single and double mutant strains shows that the increased export conferred by several prlA alleles is enhanced in the absence of SecG. Several combinations of prlA alleles with a secG deletion cannot be easily constructed. This synthetic phenotype is conditional, indicating that cells can adapt to the presence of both alleles. The biochemical basis of this phenomenon is linked to the stability of the SecYE dimer in solubilized membranes. With prlA alleles that can be normally introduced in a secG deletion strain, SecG has only a limited effect on the stability of the SecYE dimer. With the other prlA alleles, the SecYE dimer can often be detected only in the presence of SecG. A possible role for the maintenance of SecG during evolution is proposed.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Proteínas de Membrana/genética , Multimerização Proteica , Estabilidade Proteica , Canais de Translocação SEC
8.
Mol Microbiol ; 82(6): 1406-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22029793

RESUMO

Phage T4, the archetype of lytic bacterial viruses, needs only 62 genes to propagate under standard laboratory conditions. Interestingly, the T4 genome contains more than 100 putative genes of unknown function, with few detectable homologues in cellular genomes. To characterize this uncharted territory of genetic information, we have identified several T4 genes that prevent bacterial growth when expressed from plasmids under inducible conditions. Here, we report on the various phenotypes and molecular characterization of 55.1, one of the genes of unknown function. High-level expression from the arabinose-inducible P(BAD) promoter is toxic to the bacteria and delays the intracellular accumulation of phage without affecting the final burst size. Low-level expression from T4 promoter(s) renders bacteria highly sensitive to UV irradiation and hypersensitive to trimethoprim, an inhibitor of dihydrofolate reductase. The delay in intracellular phage accumulation requires UvsW, a T4 helicase that is also a suppressor of 55.1-induced toxicity and UV sensitivity. Genetic and biochemical experiments demonstrate that gp55.1 binds to FolD, a key enzyme of the folate metabolism and suppressor of 55.1. Finally, we show that gp55.1 prevents the repair of UV-induced DNA photoproducts by the nucleotide excision repair (NER) pathway through interaction with the UvrA and UvrB proteins.


Assuntos
Bacteriófago T4/genética , Reparo do DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Expressão Gênica , Proteínas Virais/metabolismo , Bacteriófago T4/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Raios Ultravioleta , Proteínas Virais/genética
9.
Res Microbiol ; 161(8): 706-10, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20674740

RESUMO

Microcin E492 (MccE492) is an antibacterial protein whose activity on target cells requires ManYZ, the inner membrane component of the mannose permease. We show here that MceA, the polypeptide core of MccE492, stably associates with ManYZ both in the presence and in the absence of MceB, the MccE492 immunity protein. The two known physiological activities of the mannose permease were assayed in cells co-expressing MceA and MceB. Under these conditions, growth on mannose as the sole carbon source is prevented; this was not observed in cells expressing only MceB. In contrast, susceptibility to bacteriophage λ infection was not affected.


Assuntos
Antibacterianos/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Klebsiella pneumoniae/metabolismo , Manose/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Antibacterianos/química , Antibiose , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/fisiologia , Membrana Celular/metabolismo , Klebsiella pneumoniae/enzimologia , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química
10.
Science ; 325(5941): 753-6, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19661432

RESUMO

Protein secretion occurs via translocation by the evolutionarily conserved Sec complex. LacZ hybrid proteins have long been used to study translocation in Escherichia coli. Some LacZ hybrids were thought to block secretion by physically jamming the Sec complex, leading to cell death. We found that jammed Sec complexes caused the degradation of essential translocator components by the protease FtsH. Increasing the amounts or the stability of the membrane protein YccA, a known inhibitor of FtsH, counteracted this destruction. Antibiotics that inhibit translation elongation also jammed the translocator and caused the degradation of translocator components, which may contribute to their effectiveness. Intriguingly, YccA is a functional homolog of the proto-oncogene product Bax Inhibitor-1, which may share a similar mechanism of action in regulating apoptosis upon prolonged secretion stress.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteases Dependentes de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Cloranfenicol/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/genética , Proteínas Mutantes/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Porinas/genética , Porinas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico/efeitos dos fármacos , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Canais de Translocação SEC , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Tetraciclina/farmacologia , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
11.
J Biol Chem ; 282(2): 1281-7, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17092931

RESUMO

Previous studies have shown that the SecY plug is displaced from the center of the SecYEG channel during polypeptide translocation. The structural and functional consequences of the deletion of the plug are now examined. Both in vivo and in vitro observations indicate that the plug domain is not essential to the function of the translocon. In fact, deletion of the plug confers to the cell and to the membranes a Prl-like phenotype: reduced proton-motive force dependence of translocation, increased membrane insertion of SecA, diminished requirement for functional leader peptide, and weakened SecYEG subunit association. Although the plug domain does not seem essential, locking the plug in the center of the channel inactivates the translocon. Thus, the SecY plug is important to regulate the activity of the channel and to confer specificity to the translocation reaction. We propose that the plug contributes to the gating mechanism of the channel by maintaining the structure of the SecYEG complex in a compact closed state.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Cristalografia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Canais de Translocação SEC
12.
J Bacteriol ; 188(20): 7049-61, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17015644

RESUMO

Microcin E492 (MccE492) is a bactericidal protein secreted by Klebsiella pneumoniae that is active against various species of Enterobacteriaceae. Interaction of MccE492 with target cells leads to the depolarization and permeabilization of their inner membranes. Several MccE492-specific proteins are required for the maturation and secretion of active MccE492. Surprisingly, the expression of only MceA, the polypeptide backbone of MccE492, is shown here to be toxic by itself. We refer to this phenomenon as endogenous MceA bactericidal activity to differentiate it from the action of extracellularly secreted MccE492. The toxicity of endogenous MceA is enhanced by an efficient targeting to the inner membrane. However, a periplasmic intermediate state is not required for MceA toxicity. Indeed, endogenous MceA remains fully active when it is fused to thioredoxin-1, a fast-folding protein that promotes retention of the C terminus of MceA in the cytoplasm. The C-terminal domain of MccE492 is required only for delivery from the extracellular environment to the periplasm, and it is not required for inner membrane damage. A common component is absolutely essential for the bactericidal activity of both endogenous MceA and extracellular MccE492. Indeed, toxicity is strictly dependent on the presence of ManYZ, an inner membrane protein complex involved in mannose uptake. Based on these findings, we propose a new model for cell entry, inner membrane insertion, and toxic activity of MccE492.


Assuntos
Bacteriocinas/metabolismo , Bacteriocinas/toxicidade , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Bacteriocinas/química , Bacteriocinas/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Viabilidade Microbiana , Modelos Biológicos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...