Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 20: 5490-5499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249559

RESUMO

Genomic wide selection (GWS) is one contributions of molecular genetics to breeding. Machine learning (ML) and artificial neural networks (ANN) methods are non-parameterized and can develop more accurate and parsimonious models for GWS analysis. Multivariate Adaptive Regression Splines (MARS) is considered one of the most flexible ML methods, automatically modeling nonlinearities and interactions of the predictor variables. This study aimed to evaluate and compare methods based on ANN, ML, including MARS, and G-BLUP through GWS. An F2 population formed by 1000 individuals and genotyped for 4010 SNP markers and twelve traits from a model considering epistatic effect, with QTL numbers ranging from eight to 480 and heritability ( h 2 ) of 0.3, 0.5 or 0.8 were simulated. Variation in heritability and number of QTL impacts the performance of methods. About quantitative traits (40, 80, 120, 240, and 480 QTLs) was observed highest R2 to Radial Base Network (RBF) and G-BLUP, followed by Random Forest (RF), Bagging (BA), and Boosting (BO). RF and BA also showed better results for traits to h 2 of 0.3 with R 2 values 16.51% and 16.30%, respectively, while MARS methods showed better results for oligogenic traits with R 2 values ranging from 39,12 % to 43,20 % in h 2 of 0.5 and from 59.92% to 78,56% in h 2 of 0.8. Non-additive MARS methods also showed high R2 for traits with high heritability and 240 QTLs or more. ANN and ML methods are powerful tools to predict genetic values in traits with epistatic effect, for different degrees of heritability and QTL numbers.

2.
PLoS One ; 16(11): e0257213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843488

RESUMO

The present study evaluated the importance of auxiliary traits of a principal trait based on phenotypic information and previously known genetic structure using computational intelligence and machine learning to develop predictive tools for plant breeding. Data of an F2 population represented by 500 individuals, obtained from a cross between contrasting homozygous parents, were simulated. Phenotypic traits were simulated based on previously established means and heritability estimates (30%, 50%, and 80%); traits were distributed in a genome with 10 linkage groups, considering two alleles per marker. Four different scenarios were considered. For the principal trait, heritability was 50%, and 40 control loci were distributed in five linkage groups. Another phenotypic control trait with the same complexity as the principal trait but without any genetic relationship with it and without pleiotropy or a factorial link between the control loci for both traits was simulated. These traits shared a large number of control loci with the principal trait, but could be distinguished by the differential action of the environment on them, as reflected in heritability estimates (30%, 50%, and 80%). The coefficient of determination were considered to evaluate the proposed methodologies. Multiple regression, computational intelligence, and machine learning were used to predict the importance of the tested traits. Computational intelligence and machine learning were superior in extracting nonlinear information from model inputs and quantifying the relative contributions of phenotypic traits. The R2 values ranged from 44.0% - 83.0% and 79.0% - 94.0%, for computational intelligence and machine learning, respectively. In conclusion, the relative contributions of auxiliary traits in different scenarios in plant breeding programs can be efficiently predicted using computational intelligence and machine learning.


Assuntos
Simulação por Computador , Aprendizado de Máquina , Melhoramento Vegetal , Inteligência Artificial , Ligação Genética , Genótipo , Fenótipo , Locos de Características Quantitativas
3.
PLoS One ; 14(1): e0210531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30653561

RESUMO

The identification of elite individuals is a critical component of most breeding programs. However, the achievement of this goal is limited by the high cost of phenotyping and experimental research. A significant benefit of genomic selection (GS) to plant breeding is the identification of elite individuals without the need for phenotyping. This study aimed to propose different calibration strategies using combinations between generations from different genetic backgrounds to improve the reliability of GS and to investigate the effects of LD in different types of mating systems: outcrossing (An) self-pollination (Sn) and hybridization (Hn). For this purpose, we simulated a genome with 10 linkage groups. In each group, two QTL were simulated. Subsequently, an F2 population was created, followed by four generations of inbreeding (S1 to S4, H1 to H 4, A1, to A4,). Quantitative traits were simulated in three scenarios considering three degrees of dominance (d/a = 0, 0.5 and 1) and two broad sense heritabilities (h2 = 0.30 and 0.70), totaling six genetic architectures. To evaluate prediction reliability, a model (RR-BLUP) was trained in one generation and used to predict the following generations of mating systems. For example, the marker effects estimated in the F2 population were used to estimate the expected genomic breeding value (GEBV) in populations S1 through A4. The squared correlation between the GEBV and the true genetic value were used to measure the reliability of the predictions. Independently of the population used to estimate the marker effect, reliability showed the lowest values in the scenario where d = 1. For any scenario, the use of the multigenerational prediction methodology improved the reliability of GS.


Assuntos
Genoma de Planta/genética , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Seleção Genética , Algoritmos , Genes de Plantas/genética , Genética Populacional/métodos , Genômica/métodos , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA