Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 332: 138846, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146772

RESUMO

Anthropogenic activity has dramatically deteriorated aquatic ecosystems in recent years. Such environmental alterations could change the primary producers' composition, exacerbating the proliferation of harmful microorganisms such as cyanobacteria. Cyanobacteria can produce several secondary metabolites, including guanitoxin, a potent neurotoxin and the only naturally occurring anticholinesterase organophosphate ever reported in the literature. Therefore, this study investigated the acute toxicity of guanitoxin-producing cyanobacteria Sphaerospermopsis torques-reginae (ITEP-024 strain) aqueous and 50% methanolic extracts in zebrafish (Danio rerio) hepatocytes (ZF-L cell line), zebrafish embryos (fish embryo toxicity - FET) and specimens of the microcrustacean Daphnia similis. For this, hepatocytes were exposed to 1-500 mg/L of the ITEP-024 extracts for 24 h, the embryos to 31.25-500 mg/L for 96 h, and D. similis to 10-3000 mg/L for 48 h. Non-target metabolomics was also performed to analyze secondary metabolites produced by the ITEP-024 using LC-MS/MS. Metabolomics indicated the guanitoxin presence just in the aqueous extract of the ITEP-024 and the presence of the cyanopeptides namalides, spumigins, and anabaenopeptins in the methanolic extract. The aqueous extract decreased the viability of zebrafish hepatocytes (EC(I)50(24h) = 366.46 mg/L), and the methanolic extract was not toxic. FET showed that the aqueous extract (LC50(96) = 353.55 mg/L) was more toxic than the methanolic extract (LC50(96) = 617.91 mg/L). However, the methanolic extract had more sublethal effects, such as abdominal and cardiac (cardiotoxicity) edema and deformation (spinal curvature of the larvae). Both extracts immobilized daphnids at the highest concentration analyzed. However, the aqueous extract was nine times more lethal (EC(I)50(48h) = 108.2 mg/L) than the methanolic extract (EC(I)50(48h) = 980.65 mg/L). Our results showed an imminent biological risk for aquatic fauna living in an ecosystem surrounded by ITEP-024 metabolites. Our findings thus highlight the urgency of understanding the effects of guanitoxin and cyanopeptides in aquatic animals.


Assuntos
Cianobactérias , Poluentes Químicos da Água , Animais , Daphnia , Peixe-Zebra , Ecossistema , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cianobactérias/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Environ Sci Pollut Res Int ; 26(29): 30508-30523, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31463743

RESUMO

The presence of natural organic matter such as humic acid (HA) can influence the behavior of graphene oxide (GO) in the aquatic environment. In this study, zebrafish embryos were analyzed after 5 and 7 days of exposure to GO (100 mg L-1) and HA (20 mg L-1) alone or together. The results indicated that, regardless of the presence of HA, larvae exposed to GO for 5 days showed an increase in locomotor activity, reduction in the yolk sac size, and total length and inhibition of AChE activity, but there was no difference in enzyme expression. The statistical analysis indicated that the reductions in total larval length, yolk sac size, and AChE activity in larvae exposed to GO persisted in relation to the control group, but there was a recovery of these parameters in groups also exposed to HA. Larvae exposed to GO for 7 days did not show significant differences in locomotor activity, but the RT-PCR gene expression analysis evidenced an increase in the AChE expression. Since the embryos exposed to GO showed a reduction in overall length, they were submitted to confocal microscopy and their muscle tissue configuration investigated. No changes were observed in the muscle tissue. The results indicated that HA is associated with the toxicity risk modulation by GO and that some compensatory homeostasis mechanisms may be involved in the developmental effects observed in zebrafish.


Assuntos
Grafite/toxicidade , Larva/efeitos dos fármacos , Peixe-Zebra/embriologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Ecotoxicologia , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Grafite/química , Substâncias Húmicas , Larva/fisiologia , Locomoção/efeitos dos fármacos , Mortalidade , Músculos/citologia , Músculos/efeitos dos fármacos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...