Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36839745

RESUMO

Bacterial cellulose (BC) is produced by several microorganisms as extracellular structures and can be modified by various physicochemical and biological strategies to produce different cellulosic formats. The main advantages of BC for biomedical applications can be summarized thus: easy moldability, purification, and scalability; high biocompatibility; and straightforward tailoring. The presence of a high amount of free hydroxyl residues, linked with water and nanoporous morphology, makes BC polymer an ideal candidate for wound healing. In this frame, acute and chronic wounds, associated with prevalent pathologies, were addressed to find adequate therapeutic strategies. Hence, the main characteristics of different BC structures-such as membranes and films, fibrous and spheroidal, nanocrystals and nanofibers, and different BC blends, as well as recent advances in BC composites with alginate, collagen, chitosan, silk sericin, and some miscellaneous blends-are reported in detail. Moreover, the development of novel antimicrobial BC and drug delivery systems are discussed.

2.
Int J Biol Macromol ; 188: 689-695, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371050

RESUMO

The incorporation of drugs in nanocomposites can be considered a potential strategy for controlled drug release. In this study, a nanocomposite based on bacterial cellulose and the palygorskite clay (BC/PLG) was produced and loaded with metronidazole (MTZ). The samples were characterized using X-ray diffraction (XRD) Spectroscopy, thermal analysis (TG/DTG) and Scanning Electron Microscopy (SEM). The barrier properties were determined to water vapor permeability (WVP). Adsorption tests with PLG were performed using MTZ and drug release profile of the membranes was investigated. The results indicated that PLG increased the crystallinity of the nanocomposites, and greater thermal stability when PLG concentration was 15.0% (BC/PLG15) was observed. WVP of the samples also varied, according to the clay content. Adsorption equilibrium was achieved from 400 mg/L of the PLG and a plateau in the MTZ release rates from BC/PLG was observed after 30 min. Therefore, the results of this study show the potential of these nanocomposite membranes as a platform for controlled drug release.


Assuntos
Celulose/química , Compostos de Magnésio/química , Metronidazol/farmacologia , Nanocompostos/química , Compostos de Silício/química , Adsorção , Cristalização , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Nanocompostos/ultraestrutura , Permeabilidade , Vapor , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...