Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
PNAS Nexus ; 2(11): pgad335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965565

RESUMO

Missense variants in calmodulin (CaM) predispose patients to arrhythmias associated with high mortality rates ("calmodulinopathy"). As CaM regulates many key cardiac ion channels, an understanding of disease mechanism associated with CaM variant arrhythmias requires elucidating individual CaM variant effects on distinct channels. One key CaM regulatory target is the KCNQ1 (KV7.1) voltage-gated potassium channel that carries the IKs current. Yet, relatively little is known as to how CaM variants interact with KCNQ1 or affect its function. Here, we take a multipronged approach employing a live-cell fluorescence resonance energy transfer binding assay, fluorescence trafficking assay, and functional electrophysiology to characterize >10 arrhythmia-associated CaM variants for effect on KCNQ1 CaM binding, membrane trafficking, and channel function. We identify one variant (G114W) that exhibits severely weakened binding to KCNQ1 but find that most other CaM variants interact with similar binding affinity to KCNQ1 when compared with CaM wild-type over physiological Ca2+ ranges. We further identify several CaM variants that affect KCNQ1 and IKs membrane trafficking and/or baseline current activation kinetics, thereby delineating KCNQ1 dysfunction in calmodulinopathy. Lastly, we identify CaM variants with no effect on KCNQ1 function. This study provides extensive functional data that reveal how CaM variants contribute to creating a proarrhythmic substrate by causing abnormal KCNQ1 membrane trafficking and current conduction. We find that CaM variant regulation of KCNQ1 is not uniform with effects varying from benign to significant loss of function, suggesting how CaM variants predispose patients to arrhythmia via the dysregulation of multiple cardiac ion channels. Classification: Biological, Health, and Medical Sciences, Physiology.

2.
Cardiovasc Digit Health J ; 4(4): 111-117, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600447

RESUMO

Background: CommandEP™ is a mixed reality (MXR) system for cardiac electrophysiological (EP) procedures that provides a real-time 3-dimensional digital image of cardiac geometry and catheter locations. In a previous study, physicians using the system demonstrated improved navigational accuracy. This study investigated the impact of the CommandEP system on EP procedural times compared to the standard-of-care electroanatomic mapping system (EAMS) display. Objective: The purpose of this retrospective case-controlled analysis was to evaluate the impact of a novel MXR interface on EP procedural times compared to a case-matched cohort. Methods: Cases from the Cardiac Augmented REality (CARE) study were matched for diagnosis and weight using a contemporary cohort. Procedural time was compared from the roll-in and full implementation cohort. During routine EP procedures, operators performed tasks during the postablation waiting phase, including creation of cardiac geometry and 5-point navigation under 2 conditions: (1) EAMS first; and (2) CommandEP. Results: From a total of 16 CARE study patients, the 10 full implementation patients were matched to a cohort of 20 control patients (2 controls:1 CARE, matched according to pathology and age/weight). No statistical difference in total case times between CARE study patients vs control group (118 ± 29 minutes vs 97 ± 20 minutes; P = .07) or fluoroscopy times (6 ± 4 minutes vs 7 ± 6 minutes; P = .9). No significant difference in case duration for CARE study patients comparing roll-in vs full-implementation cohort (121 ± 26 minutes vs 118 ± 29 minutes; P = .96). CommandEP wear time during cases was significantly longer in full implementation cases (53 ± 24 minutes vs 24 ± 5 minutes; P = .0009). During creation of a single cardiac geometry, no significant time difference was noted between CommandEP vs EAMS (284 ± 45 seconds vs 268 ± 43 seconds; P = .1) or fluoroscopy use (9 ± 19 seconds vs 6 ± 18 seconds; P = .25). During point navigation tasks, there was no difference in total time (CommandEP 31 ± 14 seconds vs EAMS 28 ± 15 seconds; P = .16) or fluoroscopy time (CommandEP 0 second vs EAMS 0 second). Conclusion: MXR did not prolong overall procedural time compared to a matched cohort. There was no prolongation in study task completion time. Future studies with experienced CommandEP users directly assessing procedural time and task completion time in a randomized study population would be of interest.

3.
bioRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37425756

RESUMO

Objective: Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with distinct hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Approach and Results: Whole-cell voltage-clamp of isolated aortic and mesenteric VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no difference in voltage-gated K + (K v ) or Ca 2+ currents. K v and Ca 2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. Pinacidil-sensitive K ATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, and were considerably larger in CS hiPSC-VSMCs. Consistent with lack of any compensatory modulation of other currents, this resulted in membrane hyperpolarization, explaining the hypomyotonic basis of CS vasculopathy. Increased compliance and dilation in isolated CS mouse aortae, was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular K ATP GoF. Conclusions: The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. The results further indicate that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by K ATP overactivity within VSMCs.

4.
J Gen Physiol ; 155(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37516919

RESUMO

Posttranslational regulation of cardiac NaV1.5 channels is critical in modulating channel expression and function, yet their regulation by phosphorylation of accessory proteins has gone largely unexplored. Using phosphoproteomic analysis of NaV channel complexes from adult mouse left ventricles, we identified nine phosphorylation sites on intracellular fibroblast growth factor 13 (iFGF13). To explore the potential roles of these phosphosites in regulating cardiac NaV currents, we abolished expression of iFGF13 in neonatal and adult mouse ventricular myocytes and rescued it with wild-type (WT), phosphosilent, or phosphomimetic iFGF13-VY. While the increased rate of closed-state inactivation of NaV channels induced by Fgf13 knockout in adult cardiomyocytes was completely restored by adenoviral-mediated expression of WT iFGF13-VY, only partial rescue was observed in neonatal cardiomyocytes after knockdown. The knockdown of iFGF13 in neonatal ventricular myocytes also shifted the voltage dependence of channel activation toward hyperpolarized potentials, a shift that was not reversed by WT iFGF13-VY expression. Additionally, we found that iFGF13-VY is the predominant isoform in adult ventricular myocytes, whereas both iFGF13-VY and iFGF13-S are expressed comparably in neonatal ventricular myocytes. Similar to WT iFGF13-VY, each of the iFGF13-VY phosphomutants studied restored NaV channel inactivation properties in both models. Lastly, Fgf13 knockout also increased the late Na+ current in adult cardiomyocytes, and this effect was restored with expression of WT and phosphosilent iFGF13-VY. Together, our results demonstrate that iFGF13 is highly phosphorylated and displays differential isoform expression in neonatal and adult ventricular myocytes. While we found no roles for iFGF13 phosphorylation, our results demonstrate differential effects of iFGF13 on neonatal and adult mouse ventricular NaV channels.


Assuntos
Miocárdio , Miócitos Cardíacos , Animais , Camundongos , Fatores de Crescimento de Fibroblastos , Adenoviridae
5.
Biophys Rev (Melville) ; 4(1): 011315, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37034130

RESUMO

In the field of cardiac electrophysiology, modeling has played a central role for many decades. However, even though the effort is well-established, it has recently seen a rapid and sustained evolution in the complexity and predictive power of the models being created. In particular, new approaches to modeling have allowed the tracking of parallel and interconnected processes that span from the nanometers and femtoseconds that determine ion channel gating to the centimeters and minutes needed to describe an arrhythmia. The connection between scales has brought unprecedented insight into cardiac arrhythmia mechanisms and drug therapies. This review focuses on the generation of these models from first principles, generation of detailed models to describe ion channel kinetics, algorithms to create and numerically solve kinetic models, and new approaches toward data gathering that parameterize these models. While we focus on application of these models for cardiac arrhythmia, these concepts are widely applicable to model the physiology and pathophysiology of any excitable cell.

6.
J Gen Physiol ; 155(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36944081

RESUMO

Voltage-gated sodium (NaV) channels are responsible for the initiation and propagation of action potentials. In the heart, the predominant NaV1.5 α subunit is composed of four homologous repeats (I-IV) and forms a macromolecular complex with multiple accessory proteins, including intracellular fibroblast growth factors (iFGF). In spite of high homology, each of the iFGFs, iFGF11-iFGF14, as well as the individual iFGF splice variants, differentially regulates NaV channel gating, and the mechanisms underlying these differential effects remain elusive. Much of the work exploring iFGF regulation of NaV1.5 has been performed in mouse and rat ventricular myocytes in which iFGF13VY is the predominant iFGF expressed, whereas investigation into NaV1.5 regulation by the human heart-dominant iFGF12B is lacking. In this study, we used a mouse model with cardiac-specific Fgf13 deletion to study the consequences of iFGF13VY and iFGF12B expression. We observed distinct effects on the voltage-dependences of activation and inactivation of the sodium currents (INa), as well as on the kinetics of peak INa decay. Results in native myocytes were recapitulated with human NaV1.5 heterologously expressed in Xenopus oocytes, and additional experiments using voltage-clamp fluorometry (VCF) revealed iFGF-specific effects on the activation of the NaV1.5 voltage sensor domain in repeat IV (VSD-IV). iFGF chimeras further unveiled roles for all three iFGF domains (i.e., the N-terminus, core, and C-terminus) on the regulation of VSD-IV, and a slower time domain of inactivation. We present here a novel mechanism of iFGF regulation that is specific to individual iFGF isoforms and that leads to distinct functional effects on NaV channel/current kinetics.


Assuntos
Miócitos Cardíacos , Canais de Sódio , Camundongos , Ratos , Humanos , Animais , Canais de Sódio/metabolismo , Potenciais de Ação/fisiologia , Isoformas de Proteínas/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo
7.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778222

RESUMO

Phosphorylation of the cardiac Na V 1.5 channel pore-forming subunit is extensive and critical in modulating channel expression and function, yet the regulation of Na V 1.5 by phosphorylation of its accessory proteins remains elusive. Using a phosphoproteomic analysis of Na V channel complexes purified from mouse left ventricles, we identified nine phosphorylation sites on Fibroblast growth factor Homologous Factor 2 (FHF2). To determine the roles of phosphosites in regulating Na V 1.5, we developed two models from neonatal and adult mouse ventricular cardiomyocytes in which FHF2 expression is knockdown and rescued by WT, phosphosilent or phosphomimetic FHF2-VY. While the increased rates of closed-state and open-state inactivation of Na V channels induced by the FHF2 knockdown are completely restored by the FHF2-VY isoform in adult cardiomyocytes, sole a partial rescue is obtained in neonatal cardiomyocytes. The FHF2 knockdown also shifts the voltage-dependence of activation towards hyperpolarized potentials in neonatal cardiomyocytes, which is not rescued by FHF2-VY. Parallel investigations showed that the FHF2-VY isoform is predominant in adult cardiomyocytes, while expression of FHF2-VY and FHF2-A is comparable in neonatal cardiomyocytes. Similar to WT FHF2-VY, however, each FHF2-VY phosphomutant restores the Na V channel inactivation properties in both models, preventing identification of FHF2 phosphosite roles. FHF2 knockdown also increases the late Na + current in adult cardiomyocytes, which is restored similarly by WT and phosphosilent FHF2-VY. Together, our results demonstrate that ventricular FHF2 is highly phosphorylated, implicate differential roles for FHF2 in regulating neonatal and adult mouse ventricular Na V 1.5, and suggest that the regulation of Na V 1.5 by FHF2 phosphorylation is highly complex. eTOC Summary: Lesage et al . identify the phosphorylation sites of FHF2 from mouse left ventricular Na V 1.5 channel complexes. While no roles for FHF2 phosphosites could be recognized yet, the findings demonstrate differential FHF2-dependent regulation of neonatal and adult mouse ventricular Na V 1.5 channels.

8.
bioRxiv ; 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36747728

RESUMO

Rationale: Missense variants in calmodulin (CaM) predispose patients to arrhythmias associated with high mortality rates. As CaM regulates several key cardiac ion channels, a mechanistic understanding of CaM variant-associated arrhythmias requires elucidating individual CaM variant effect on distinct channels. One key CaM regulatory target is the KCNQ1 (K V 7.1) voltage-gated potassium channel that underlie the I Ks current. Yet, relatively little is known as to how CaM variants interact with KCNQ1 or affect its function. Objective: To observe how arrhythmia-associated CaM variants affect binding to KCNQ1, channel membrane trafficking, and KCNQ1 function. Methods and Results: We combine a live-cell FRET binding assay, fluorescence trafficking assay, and functional electrophysiology to characterize >10 arrhythmia-associated CaM variants effect on KCNQ1. We identify one variant (G114W) that exhibits severely weakened binding to KCNQ1 but find that most other CaM variants interact with similar binding affinity to KCNQ1 when compared to CaM wild-type over physiological Ca 2+ ranges. We further identify several CaM variants that affect KCNQ1 and I Ks membrane trafficking and/or baseline current activation kinetics, thereby contextualizing KCNQ1 dysfunction in calmodulinopathy. Lastly, we delineate CaM variants with no effect on KCNQ1 function. Conclusions: This study provides comprehensive functional data that reveal how CaM variants contribute to creating a pro-arrhythmic substrate by causing abnormal KCNQ1 membrane trafficking and current conduction. We find that CaM variant regulation of KCNQ1 is not uniform with effects varying from benign to significant loss of function. This study provides a new approach to collecting details of CaM binding that are key for understanding how CaM variants predispose patients to arrhythmia via the dysregulation of multiple cardiac ion channels.

9.
Nat Commun ; 13(1): 6784, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351900

RESUMO

BK type Ca2+-activated K+ channels activate in response to both voltage and Ca2+. The membrane-spanning voltage sensor domain (VSD) activation and Ca2+ binding to the cytosolic tail domain (CTD) open the pore across the membrane, but the mechanisms that couple VSD activation and Ca2+ binding to pore opening  are not clear. Here we show that a compound, BC5, identified from in silico screening, interacts with the CTD-VSD interface and specifically modulates the Ca2+ dependent activation mechanism. BC5 activates the channel in the absence of Ca2+ binding but Ca2+ binding inhibits BC5 effects. Thus, BC5 perturbs a pathway that couples Ca2+ binding to pore opening to allosterically affect both, which is further supported by atomistic simulations and mutagenesis. The results suggest that the CTD-VSD interaction makes a major contribution to the mechanism of Ca2+ dependent activation and is an important site for allosteric agonists to modulate BK channel activation.


Assuntos
Cálcio , Canais de Potássio Ativados por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Membrana Celular/metabolismo , Cálcio/metabolismo
10.
Cardiovasc Digit Health J ; 3(5): 232-240, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36310686

RESUMO

Background: Use of ultrasound (US) to facilitate vascular access has increased compared to landmark-based procedures despite ergonomic challenges and need for extrapolation of 2-dimensional images to understand needle position. The MantUS™ system (Sentiar, Inc.,) uses a mixed reality (MxR) interface to display US images and integrate real-time needle tracking. Objective: The purpose of this prospective preclinical study was to evaluate the feasibility and usability of MantUS in a simulated environment. Methods: Participants were recruited from pediatric cardiology and critical care. Access was obtained in 2 vascular access training models: a femoral access model and a head and neck model for a total of 4 vascular access sites under 2 conditions-conventional US and MantUS. Participants were randomized for order of completion. Videos were obtained, and quality of access including time required, repositions, number of attempts, and angle of approach were quantified. Results: Use of MantUS resulted in an overall reduction in number of needle repositions (P = .03) and improvement in quality of access as measured by distance (P <.0001) and angle of elevation (P = .006). These findings were even more evident in the right femoral vein (RFV) access site, which was a simulated anatomic variant with a deeper more oblique vascular course. Use of MantUS resulted in faster time to access (P = .04), fewer number of both access attempts (P = .02), and number of needle repositions (P <.0001) compared to conventional US. Postparticipant survey showed high levels of usability (87%) and a belief that MantUS may decrease adverse outcomes (73%) and failed access attempts (83%). Conclusion: Use of MantUS improved vascular access among all comers, including the quality of access. This improvement was even more notable in the vascular variant (RFV). MantUS readily benefited users by providing improved spatial understanding. Further development of MantUS will focus on improving user interface and experience, with larger clinical usage and in-human studies.

11.
Tissue Eng Part C Methods ; 28(9): 457-468, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925789

RESUMO

Drugs are often removed from clinical trials or market progression owing to their unforeseen effects on cardiac action potential and calcium handling. Induced pluripotent stem cell-derived cardiomyocytes and tissues fabricated from these cells are promising as screening tools for early identification of these potential cardiac liabilities. In this study, we describe an automated, open-source MATLAB-based analysis software for calculating cardiac action potentials and calcium transients from fluorescent reporters. We first identified the most robust manner in which to automatically identify the initiation point for action potentials and calcium transients in a user-independent manner, and used this approach to quantify the duration and morphology of these signals. We then demonstrate the software by assessing changes to action potentials and calcium transients in our micro-heart muscles after exposure to hydroxychloroquine, an antimalarial drug with known cardiac liability. Consistent with clinical observations, our system predicted mild action potential prolongation. However, we also observed marked calcium transient suppression, highlighting the advantage of testing multiple physiologic readouts in cardiomyocytes rather than relying on heterologous overexpression of single channels such as the human ether-a-go-go-related gene channel. This open-source software can serve as a useful, high-throughput tool for analyzing cardiomyocyte physiology from fluorescence imaging.


Assuntos
Antimaláricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes Induzidas , Antimaláricos/farmacologia , Cálcio , Eletrofisiologia , Éteres/farmacologia , Humanos , Hidroxicloroquina/farmacologia , Miócitos Cardíacos
12.
Curr Protoc ; 2(2): e374, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35175690

RESUMO

Computational modeling of ion channels provides key insight into experimental electrophysiology results and can be used to connect channel dynamics to emergent phenomena observed at the tissue and organ levels. However, creation of these models requires substantial mathematical and computational background. This tutorial seeks to lower the barrier to creating these models by providing an automated pipeline for creating Markov models of an ion channel kinetics dataset. We start by detailing how to encode sample voltage-clamp protocols and experimental data into the program and its implementation in a cloud computing environment. We guide the reader on how to build a containerized instance, push the machine image, and finally run the routine on cluster nodes. While providing open-source code has become more standard in computational studies, this tutorial provides unprecedented detail on the use of the program and the creation of channel models, starting from inputting the raw experimental data. © 2022 Wiley Periodicals LLC. Basic Protocol: Creation of ion channel kinetic models with a cloud computing environment Alternate Protocol: Instructions for use in a standard high-performance compute cluster.


Assuntos
Computação em Nuvem , Canais Iônicos , Simulação por Computador , Canais Iônicos/metabolismo , Cinética , Software
13.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076394

RESUMO

The resurgent component of the voltage-gated sodium current (INaR) is a depolarizing conductance, revealed on membrane hyperpolarizations following brief depolarizing voltage steps, which has been shown to contribute to regulating the firing properties of numerous neuronal cell types throughout the central and peripheral nervous systems. Although mediated by the same voltage-gated sodium (Nav) channels that underlie the transient and persistent Nav current components, the gating mechanisms that contribute to the generation of INaR remain unclear. Here, we characterized Nav currents in mouse cerebellar Purkinje neurons, and used tailored voltage-clamp protocols to define how the voltage and the duration of the initial membrane depolarization affect the amplitudes and kinetics of INaR. Using the acquired voltage-clamp data, we developed a novel Markov kinetic state model with parallel (fast and slow) inactivation pathways and, we show that this model reproduces the properties of the resurgent, as well as the transient and persistent, Nav currents recorded in (mouse) cerebellar Purkinje neurons. Based on the acquired experimental data and the simulations, we propose that resurgent Na+ influx occurs as a result of fast inactivating Nav channels transitioning into an open/conducting state on membrane hyperpolarization, and that the decay of INaR reflects the slow accumulation of recovered/opened Nav channels into a second, alternative and more slowly populated, inactivated state. Additional simulations reveal that extrinsic factors that affect the kinetics of fast or slow Nav channel inactivation and/or impact the relative distribution of Nav channels in the fast- and slow-inactivated states, such as the accessory Navß4 channel subunit, can modulate the amplitude of INaR.


Assuntos
Potenciais de Ação/fisiologia , Ativação do Canal Iônico , Células de Purkinje/metabolismo , Sódio/metabolismo , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/deficiência , Animais , Animais Recém-Nascidos , Cerebelo/citologia , Feminino , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Equilíbrio Postural/fisiologia , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo
15.
JACC Cardiovasc Imaging ; 15(3): 519-532, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34656478

RESUMO

Applications of virtual reality (VR) and augmented reality (AR) assist both health care providers and patients in cardiovascular education, complementing traditional learning methods. Interventionalists have successfully used VR to plan difficult procedures and AR to facilitate complex interventions. VR/AR has already been used to treat patients, during interventions in rehabilitation programs and in immobilized intensive care patients. There are numerous additional potential applications in the catheterization laboratory. By using AR, interventionalists could combine visual fluoroscopy information projected and registered on the patient body with data derived from preprocedural imaging and live fusion of different imaging modalities such as fluoroscopy with echocardiography. Persistent technical challenges to overcome include the integration of different imaging modalities into VR/AR and the harmonization of data flow and interfaces. Cybersickness might exclude some patients and users from the potential benefits of VR/AR. Critical ethical considerations arise in the application of VR/AR in vulnerable patients. In addition, digital applications must not distract physicians from the patient. It is our duty as physicians to participate in the development of these innovations to ensure a virtual health reality benefit for our patients in a real-world setting. The purpose of this review is to summarize the current and future role of VR and AR in different fields within cardiology, its challenges, and perspectives.


Assuntos
Realidade Aumentada , Realidade Virtual , Fluoroscopia , Humanos , Valor Preditivo dos Testes
16.
Front Pharmacol ; 12: 761275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867379

RESUMO

The voltage-gated Na+ channel regulates the initiation and propagation of the action potential in excitable cells. The major cardiac isoform NaV1.5, encoded by SCN5A, comprises a monomer with four homologous repeats (I-IV) that each contain a voltage sensing domain (VSD) and pore domain. In native myocytes, NaV1.5 forms a macromolecular complex with NaVß subunits and other regulatory proteins within the myocyte membrane to maintain normal cardiac function. Disturbance of the NaV complex may manifest as deadly cardiac arrhythmias. Although SCN5A has long been identified as a gene associated with familial atrial fibrillation (AF) and Brugada Syndrome (BrS), other genetic contributors remain poorly understood. Emerging evidence suggests that mutations in the non-covalently interacting NaVß1 and NaVß3 are linked to both AF and BrS. Here, we investigated the molecular pathologies of 8 variants in NaVß1 and NaVß3. Our results reveal that NaVß1 and NaVß3 variants contribute to AF and BrS disease phenotypes by modulating both NaV1.5 expression and gating properties. Most AF-linked variants in the NaVß1 subunit do not alter the gating kinetics of the sodium channel, but rather modify the channel expression. In contrast, AF-related NaVß3 variants directly affect channel gating, altering voltage-dependent activation and the time course of recovery from inactivation via the modulation of VSD activation.

17.
J Gen Physiol ; 153(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34347027

RESUMO

Voltage-gated Na+ (NaV) channels underlie the initiation and propagation of action potentials (APs). Rapid inactivation after NaV channel opening, known as open-state inactivation, plays a critical role in limiting the AP duration. However, NaV channel inactivation can also occur before opening, namely closed-state inactivation, to tune the cellular excitability. The voltage-sensing domain (VSD) within repeat IV (VSD-IV) of the pseudotetrameric NaV channel α-subunit is known to be a critical regulator of NaV channel inactivation. Yet, the two processes of open- and closed-state inactivation predominate at different voltage ranges and feature distinct kinetics. How inactivation occurs over these different ranges to give rise to the complexity of NaV channel dynamics is unclear. Past functional studies and recent cryo-electron microscopy structures, however, reveal significant inactivation regulation from other NaV channel components. In this Hypothesis paper, we propose that the VSD of NaV repeat III (VSD-III), together with VSD-IV, orchestrates the inactivation-state occupancy of NaV channels by modulating the affinity of the intracellular binding site of the IFMT motif on the III-IV linker. We review and outline substantial evidence that VSD-III activates in two distinct steps, with the intermediate and fully activated conformation regulating closed- and open-state inactivation state occupancy by altering the formation and affinity of the IFMT crevice. A role of VSD-III in determining inactivation-state occupancy and recovery from inactivation suggests a regulatory mechanism for the state-dependent block by small-molecule anti-arrhythmic and anesthetic therapies.


Assuntos
Sódio , Potenciais de Ação , Microscopia Crioeletrônica , Cinética
18.
PLoS Comput Biol ; 17(8): e1008932, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398881

RESUMO

Markov models of ion channel dynamics have evolved as experimental advances have improved our understanding of channel function. Past studies have examined limited sets of various topologies for Markov models of channel dynamics. We present a systematic method for identification of all possible Markov model topologies using experimental data for two types of native voltage-gated ion channel currents: mouse atrial sodium currents and human left ventricular fast transient outward potassium currents. Successful models identified with this approach have certain characteristics in common, suggesting that aspects of the model topology are determined by the experimental data. Incorporating these channel models into cell and tissue simulations to assess model performance within protocols that were not used for training provided validation and further narrowing of the number of acceptable models. The success of this approach suggests a channel model creation pipeline may be feasible where the structure of the model is not specified a priori.


Assuntos
Canais Iônicos/metabolismo , Modelos Cardiovasculares , Miocárdio/metabolismo , Potenciais de Ação , Animais , Fenômenos Biofísicos , Biologia Computacional , Simulação por Computador , Bases de Dados Factuais , Células HEK293 , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Canais Iônicos/química , Cinética , Cadeias de Markov , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
19.
Adv Mater ; 33(32): e2008809, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34216406

RESUMO

Advances in the design and synthesis of nanomaterials with desired biophysicochemical properties can be harnessed to develop non-invasive neuromodulation technologies. Here, the reversible modulation of the electrical activity of neurons and cardiomyocytes is demonstrated using polydopamine (PDA) nanoparticles as photothermal nanotransducers. In addition to their broad light absorption and excellent photothermal activity, PDA nanoparticles are highly biocompatible and biodegradable, making them excellent candidates for both in vitro and in vivo applications. The modulation of the activity (i.e., spike rate of the neurons and beating rate of cardiomyocytes) of excitable cells can be finely controlled by varying the excitation power density and irradiation duration. Under optimal conditions, reversible suppression (≈100%) of neural activity and reversible enhancement (two-fold) in the beating rate of cardiomyocytes is demonstrated. To improve the ease of interfacing of photothermal transducers with these excitable cells and enable spatial localization of the photothermal stimulus, a collagen/PDA nanoparticle foam is realized, which can be used as an "add-on patch" for photothermal stimulation. The non-genetic optical neuromodulation approach using biocompatible and biodegradable nanoparticles represents a minimally invasive method for controlling the activity of excitable cells with potential applications in nano-neuroscience and engineering.


Assuntos
Materiais Biocompatíveis/química , Indóis/química , Nanopartículas/química , Polímeros/química , Potenciais de Ação/efeitos dos fármacos , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Frequência Cardíaca/efeitos dos fármacos , Raios Infravermelhos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Temperatura
20.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156986

RESUMO

Native myocardial voltage-gated sodium (NaV) channels function in macromolecular complexes comprising a pore-forming (α) subunit and multiple accessory proteins. Here, we investigated the impact of accessory NaVß1 and NaVß3 subunits on the functional effects of 2 well-known class Ib antiarrhythmics, lidocaine and ranolazine, on the predominant NaV channel α subunit, NaV1.5, expressed in the mammalian heart. We showed that both drugs stabilized the activated conformation of the voltage sensor of domain-III (DIII-VSD) in NaV1.5. In the presence of NaVß1, the effect of lidocaine on the DIII-VSD was enhanced, whereas the effect of ranolazine was abolished. Mutating the main class Ib drug-binding site, F1760, affected but did not abolish the modulation of drug block by NaVß1/ß3. Recordings from adult mouse ventricular myocytes demonstrated that loss of Scn1b (NaVß1) differentially affected the potencies of lidocaine and ranolazine. In vivo experiments revealed distinct ECG responses to i.p. injection of ranolazine or lidocaine in WT and Scn1b-null animals, suggesting that NaVß1 modulated drug responses at the whole-heart level. In the human heart, we found that SCN1B transcript expression was 3 times higher in the atria than ventricles, differences that could, in combination with inherited or acquired cardiovascular disease, dramatically affect patient response to class Ib antiarrhythmic therapies.


Assuntos
Átrios do Coração , Lidocaína/farmacologia , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ranolazina/farmacologia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Antiarrítmicos/farmacologia , Biomarcadores Farmacológicos/metabolismo , Eletrocardiografia/métodos , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...