Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Brain Commun ; 6(2): fcae062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487549

RESUMO

The identification of biomarkers for spinal muscular atrophy is crucial for predicting disease progression, severity, and response to new disease-modifying therapies. This study aimed to investigate the role of serum levels of myostatin and follistatin as biomarkers for spinal muscular atrophy, considering muscle atrophy secondary to denervation as the main clinical manifestation of the disease. The study evaluated the differential gene expression of myostatin and follistatin in a lesional model of gastrocnemius denervation in mice, as well as in a meta-analysis of three datasets in transgenic mice models of spinal muscular atrophy, and in two studies involving humans with spinal muscular atrophy. Subsequently, a case-control study involving 27 spinal muscular atrophy patients and 27 controls was conducted, followed by a 12-month cohort study with 25 spinal muscular atrophy cases. Serum levels of myostatin and follistatin were analysed using enzyme-linked immunosorbent assay at a single centre in southern Brazil. Skeletal muscle gene expression of myostatin decreased and of follistatin increased following lesional muscle denervation in mice, consistent with findings in the spinal muscular atrophy transgenic mice meta-analysis and in the iliopsoas muscle of five patients with spinal muscular atrophy type 1. Median serum myostatin levels were significantly lower in spinal muscular atrophy patients (98 pg/mL; 5-157) compared to controls (412 pg/mL; 299-730) (P < 0.001). Lower myostatin levels were associated with greater disease severity based on clinician-rated outcomes (Rho = 0.493-0.812; P < 0.05). After 12 months, there was a further reduction in myostatin levels among spinal muscular atrophy cases (P = 0.021). Follistatin levels did not differ between cases and controls, and no significant changes were observed over time. The follistatin:myostatin ratio was significantly increased in spinal muscular atrophy subjects and inversely correlated with motor severity. Serum myostatin levels show promise as a novel biomarker for evaluating the severity and progression of spinal muscular atrophy. The decrease in myostatin levels and the subsequent favourable environment for muscle growth may be attributed to denervation caused by motor neuron dysfunction.

2.
Adv Rheumatol ; 62: 27, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1393818

RESUMO

Abstract Introduction/objectives: Clinical evidence of skeletal muscle involvement is not uncommon in systemic lupus erythematosus (SLE). Because of the poor understanding of signaling pathways involved in SLE muscle wasting, the aim of this study was to evaluate the effects of vitamin D supplementation on skeletal muscle in mice with pristane-induced lupus. Methods: Balb/c mice with lupus-like disease induced by pristane injection were randomized into three groups: pristane-induced lupus (PIL; n = 10), pristane-induced lupus + vitamin D supplementation (PIL + VD; n = 10) and healthy controls (CO; n = 8). Physical function was evaluated on days 0, 60, 120 and 180. The tibialis anterior and gastrocnemius muscles were collected to evaluate myofiber cross-sectional area (CSA) and protein expression. Results: The PIL + VD group showed lower muscle strength compared to the CO and PIL groups at different time points. PIL mice showed similar myofiber CSA compared to CO and PIL + VD groups. LC3-II expression was higher in PIL compared to CO and PIL + VD groups. MyoD expression was higher in PIL mice compared to PIL + VD, while myostatin expression was higher in PIL + VD than PIL group. Myogenin expression levels were decreased in the PIL + VD group compared with the CO group. The Akt, p62 and MuRF expressions and mobility assessment showed no significance. Conclusions: Changes in skeletal muscle in PIL model happen before CSA reduction, possibly due to autophagy degradation, and treatment with Vitamin D has a impact on physical function by decreasing muscle strength and time of fatigue.. Vitamin D supplementation has a potential role modulating physical parameters and signaling pathways in muscle during pristane-induced lupus model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA