Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharm Biol ; 54(12): 3169-3171, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27564011

RESUMO

CONTEXT: Thr6-bradykinin is a peptide found in the venom of social and solitary wasps. This kinin, along with other bradykinin-like peptides, is known to cause irreversible paralysis in insects by presynaptic blockade of cholinergic transmission. However, this activity has never been tested in mammals. OBJECTIVE: As such, the objective of this study was to evaluate the effect of Thr6-bradykinin on the cholinergic system of rats. MATERIALS AND METHODS: The peptide was isolated from the venom of the Neotropical social wasp Polybia occidentalis Olivier (Vespidae). After correct identification and quantification by ESI-MS and MS/MS, the peptide was tested in [14C]-choline uptake using rat cortical synaptosomes. Each uptake assay was accompanied by lactic acid dehydrogenase (LDH) activity measurement to evaluate synaptosome integrity in the presence of six increasing concentrations of BK or Thr6-BK (0.039, 0.156, 0.625, 2.500, 10.000 and 40.000 µM). RESULTS: Data revealed that neither BK nor Thr6-BK at any of the six concentrations tested (from 0.039 to 40.000 µM) affected [14C]-choline uptake in synaptosomes. Moreover, there was no increase in LDH in the supernatants, indicating that BK and Thr6-BK did not disrupt the synaptosomes. DISCUSSION AND CONCLUSION: In contrast to previous reports for the insect central nervous system (CNS), Thr6-BK had no effect on mammalian cholinergic transmission. Nevertheless, this selectivity for the insect CNS, combined with its irreversible mode of action may be relevant to the discovery of new sources of insecticides and could contribute to understanding the role of kinins in the mammalian CNS.


Assuntos
Bradicinina/metabolismo , Córtex Cerebral/metabolismo , Colina/metabolismo , Venenos de Vespas/metabolismo , Animais , Bradicinina/isolamento & purificação , Bradicinina/farmacologia , Radioisótopos de Carbono/metabolismo , Córtex Cerebral/efeitos dos fármacos , Colina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Ratos , Ratos Wistar , Venenos de Vespas/isolamento & purificação , Venenos de Vespas/farmacologia , Vespas
2.
Artigo em Inglês | MEDLINE | ID: mdl-26257776

RESUMO

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer's disease, epilepsy, Parkinson's disease, and pathological anxiety.

3.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484613

RESUMO

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimers disease, epilepsy, Parkinsons disease, and pathological anxiety.


Assuntos
Animais , Animais Peçonhentos , Doenças do Sistema Nervoso/terapia , Venenos de Artrópodes/uso terapêutico
4.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954768

RESUMO

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer's disease, epilepsy, Parkinson's disease, and pathological anxiety.(AU)


Assuntos
Animais , Venenos de Artrópodes , Produtos Biológicos , Sistema Nervoso Central , Doenças do Sistema Nervoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...