Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463951

RESUMO

Double-strand breaks (DSBs) are the most deleterious lesions experienced by our genome. Yet, DSBs are intentionally induced during gamete formation to promote the exchange of genetic material between homologous chromosomes. While the conserved topoisomerase-like enzyme Spo11 catalyzes DSBs, additional regulatory proteins-referred to as "Spo11 accessory factors"- regulate the number, timing, and placement of DSBs during early meiotic prophase ensuring that SPO11 does not wreak havoc on the genome. Despite the importance of the accessory factors, they are poorly conserved at the sequence level suggesting that these factors may adopt unique functions in different species. In this work, we present a detailed analysis of the genetic and physical interactions between the DSB factors in the nematode Caenorhabditis elegans providing new insights into conserved and novel functions of these proteins. This work shows that HIM-5 is the determinant of X-chromosome-specific crossovers and that its retention in the nucleus is dependent on DSB-1, the sole accessory factor that interacts with SPO-11. We further provide evidence that HIM-5 coordinates the actions of the different accessory factors sub-groups, providing insights into how components on the DNA loops may interact with the chromosome axis.

2.
Nucleic Acids Res ; 50(21): 12291-12308, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36478097

RESUMO

Meiotic chromosome segregation relies on programmed DNA double-strand break induction. These are in turn repaired by homologous recombination, generating physical attachments between the parental chromosomes called crossovers. A subset of breaks yields recombinant outcomes, while crossover-independent mechanisms repair the majority of lesions. The balance between different repair pathways is crucial to ensure genome integrity. We show that Caenorhabditis elegans BRC-1/BRCA1-BRD-1/BARD1 and PARG-1/PARG form a complex in vivo, essential for accurate DNA repair in the germline. Simultaneous depletion of BRC-1 and PARG-1 causes synthetic lethality due to reduced crossover formation and impaired break repair, evidenced by hindered RPA-1 removal and presence of aberrant chromatin bodies in diakinesis nuclei, whose formation depends on spo-11 function. These factors undergo a similar yet independent loading in developing oocytes, consistent with operating in different pathways. Abrogation of KU- or Theta-mediated end joining elicits opposite effects in brc-1; parg-1 doubles, suggesting a profound impact in influencing DNA repair pathway choice by BRC-1-PARG-1. Importantly, lack of PARG-1 catalytic activity suppresses untimely accumulation of RAD-51 foci in brc-1 mutants but is only partially required for fertility. Our data show that BRC-1/BRD-1-PARG-1 joint function is essential for genome integrity in meiotic cells by regulating multiple DNA repair pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Reparo do DNA , Proteínas de Ligação a DNA , Proteínas Ativadoras de GTPase , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quebras de DNA de Cadeia Dupla , Gametogênese , Meiose , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Cell Rep ; 40(13): 111403, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170820

RESUMO

Faithful chromosome segregation into gametes depends on Spo11-induced DNA double-strand breaks (DSBs). These yield single-stranded 3' tails upon resection to promote crossovers (COs). While early Mre11-dependent end resection is the predominant pathway in most organisms, Exo1 or Dna2/BLM can also contribute to the efficient processing of meiotic DSBs. Although its enzymatic activity has been thoroughly dissected, the temporal dynamics underlying Spo11 activity have remained mostly elusive. We show that, in Caenorhabditis elegans, SPO-11-mediated DSB induction takes place throughout early meiotic prophase I until mid-late pachynema. We find that late DSBs are essential for CO formation and are preferentially processed by EXO-1 and DNA-2 in a redundant fashion. Further, EXO-1-DNA-2-mediated resection ensures completion of conservative DSB repair and discourages activation of KU-dependent end joining. Taken together, our data unveil important temporal aspects of DSB induction and identify previously unknown functional implications for EXO-1-DNA-2-mediated resection activity in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Meiose
4.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35389463

RESUMO

Generation of functional gametes is accomplished through a multilayered and finely orchestrated succession of events during meiotic progression. In the Caenorhabditis elegans germline, the HORMA-domain-containing protein HTP-3 plays pivotal roles for the establishment of chromosome axes and the efficient induction of programmed DNA double-strand breaks, both of which are crucial for crossover formation. Double-strand breaks allow for accurate chromosome segregation during the first meiotic division and therefore are an essential requirement for the production of healthy gametes. Phosphorylation-dependent regulation of HORMAD protein plays important roles in controlling meiotic chromosome behavior. Here, we document a phospho-site in HTP-3 at Serine 285 that is constitutively phosphorylated during meiotic prophase I. pHTP-3S285 localization overlaps with panHTP-3 except in nuclei undergoing physiological apoptosis, in which pHTP-3 is absent. Surprisingly, we observed that phosphorylation of HTP-3 at S285 is independent of the canonical kinases that control meiotic progression in nematodes. During meiosis, the htp-3(S285A) mutant displays accelerated RAD-51 turnover, but no other meiotic abnormalities. Altogether, these data indicate that the Ser285 phosphorylation is independent of canonical meiotic protein kinases and does not regulate HTP-3-dependent meiotic processes. We propose a model wherein phosphorylation of HTP-3 occurs through noncanonical or redundant meiotic kinases and/or is likely redundant with additional phospho-sites for function in vivo.


Assuntos
Proteínas de Caenorhabditis elegans , Meiose , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Fosforilação , Serina/metabolismo , Complexo Sinaptonêmico/metabolismo
5.
PLoS Genet ; 18(1): e1010025, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081133

RESUMO

Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1's role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.


Assuntos
Aminopeptidases/genética , Caenorhabditis elegans/genética , Instabilidade Genômica , Aminopeptidases/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Proliferação de Células , Replicação do DNA , Prolina/metabolismo
6.
PLoS Genet ; 17(7): e1009663, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252074

RESUMO

Homologous recombination is a high-fidelity repair pathway for DNA double-strand breaks employed during both mitotic and meiotic cell divisions. Such repair can lead to genetic exchange, originating from crossover (CO) generation. In mitosis, COs are suppressed to prevent sister chromatid exchange. Here, the BTR complex, consisting of the Bloom helicase (HIM-6 in worms), topoisomerase 3 (TOP-3), and the RMI1 (RMH-1 and RMH-2) and RMI2 scaffolding proteins, is essential for dismantling joint DNA molecules to form non-crossovers (NCOs) via decatenation. In contrast, in meiosis COs are essential for accurate chromosome segregation and the BTR complex plays distinct roles in CO and NCO generation at different steps in meiotic recombination. RMI2 stabilizes the RMI1 scaffolding protein, and lack of RMI2 in mitosis leads to elevated sister chromatid exchange, as observed upon RMI1 knockdown. However, much less is known about the involvement of RMI2 in meiotic recombination. So far, RMI2 homologs have been found in vertebrates and plants, but not in lower organisms such as Drosophila, yeast, or worms. We report the identification of the Caenorhabditis elegans functional homolog of RMI2, which we named RMIF-2. The protein shows a dynamic localization pattern to recombination foci during meiotic prophase I and concentration into recombination foci is mutually dependent on other BTR complex proteins. Comparative analysis of the rmif-2 and rmh-1 phenotypes revealed numerous commonalities, including in regulating CO formation and directing COs toward chromosome arms. Surprisingly, the prevalence of heterologous recombination was several fold lower in the rmif-2 mutant, suggesting that RMIF-2 may be dispensable or less strictly required for some BTR complex-mediated activities during meiosis.


Assuntos
Proteínas Cromossômicas não Histona/genética , Troca Genética/genética , Meiose/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Cromossomos/metabolismo , Troca Genética/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Meiose/fisiologia , Troca de Cromátide Irmã/genética
7.
Nat Commun ; 11(1): 4869, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978394

RESUMO

Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism.


Assuntos
Caenorhabditis elegans/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , DNA/metabolismo , Glicosídeo Hidrolases/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Células Germinativas , Glicosídeo Hidrolases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional
8.
Sci Rep ; 10(1): 103, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919410

RESUMO

Fanconi Anemia is a rare genetic disease associated with DNA repair defects, congenital abnormalities and infertility. Most of FA pathway is evolutionary conserved, allowing dissection and mechanistic studies in simpler model systems such as Caenorhabditis elegans. In the present study, we employed C. elegans to better understand the role of FA group D2 (FANCD2) protein in vivo, a key player in promoting genome stability. We report that localization of FCD-2/FANCD2 is dynamic during meiotic prophase I and requires its heterodimeric partner FNCI-1/FANCI. Strikingly, we found that FCD-2 recruitment depends on SPO-11-induced double-strand breaks (DSBs) but not RAD-51-mediated strand invasion. Furthermore, exposure to DNA damage-inducing agents boosts FCD-2 recruitment on the chromatin. Finally, analysis of genetic interaction between FCD-2 and BRC-1 (the C. elegans orthologue of mammalian BRCA1) supports a role for these proteins in different DSB repair pathways. Collectively, we showed a direct involvement of FCD-2 at DSBs and speculate on its function in driving meiotic DNA repair.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Meiose , Recombinação Genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética
9.
PLoS Genet ; 14(11): e1007653, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383754

RESUMO

During meiosis, the maternal and paternal homologous chromosomes must align along their entire length and recombine to achieve faithful segregation in the gametes. Meiotic recombination is accomplished through the formation of DNA double-strand breaks, a subset of which can mature into crossovers to link the parental homologous chromosomes and promote their segregation. Breast and ovarian cancer susceptibility protein BRCA1 and its heterodimeric partner BARD1 play a pivotal role in DNA repair in mitotic cells; however, their functions in gametogenesis are less well understood. Here we show that localization of BRC-1 and BRD-1 (Caenorhabditis elegans orthologues of BRCA1 and BARD1) is dynamic during meiotic prophase I; they ultimately becoming concentrated at regions surrounding the presumptive crossover sites, co-localizing with the pro-crossover factors COSA-1, MSH-5 and ZHP-3. The synaptonemal complex and PLK-2 activity are essential for recruitment of BRC-1 to chromosomes and its subsequent redistribution towards the short arm of the bivalent. BRC-1 and BRD-1 form in vivo complexes with the synaptonemal complex component SYP-3 and the crossover-promoting factor MSH-5. Furthermore, BRC-1 is essential for efficient stage-specific recruitment/stabilization of the RAD-51 recombinase to DNA damage sites when synapsis is impaired and upon induction of exogenous damage. Taken together, our data provide new insights into the localization and meiotic function of the BRC-1-BRD-1 complex and highlight its essential role in DNA double-strand break repair during gametogenesis.


Assuntos
Proteína BRCA1/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Meiose , Rad51 Recombinase/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Proteína BRCA1/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Pareamento Cromossômico , Células Germinativas/metabolismo , Meiose/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico , Rad51 Recombinase/genética
10.
PLoS Genet ; 14(10): e1007776, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30379819

RESUMO

Correct segregation of meiotic chromosomes depends on DNA crossovers (COs) between homologs that culminate into visible physical linkages called chiasmata. COs emerge from a larger population of joint molecules (JM), the remainder of which are repaired as noncrossovers (NCOs) to restore genomic integrity. We present evidence that the RNF212-like C. elegans protein ZHP-4 cooperates with its paralog ZHP-3 to enforce crossover formation at distinct steps during meiotic prophase: in the formation of early JMs and in transition of late CO intermediates into chiasmata. ZHP-3/4 localize to the synaptonemal complex (SC) co-dependently followed by their restriction to sites of designated COs. RING domain mutants revealed a critical function for ZHP-4 in localization of both proteins to the SC and for CO formation. While recombination initiates in zhp-4 mutants, they fail to appropriately acquire pro-crossover factors at abundant early JMs, indicating a function for ZHP-4 in an early step of the CO/NCO decision. At late pachytene stages, hypomorphic mutants exhibit significant levels of crossing over that are accompanied by defects in localization of pro-crossover RMH-1, MSH-5 and COSA-1 to designated crossover sites, and by the appearance of bivalents defective in chromosome remodelling required for segregation. These results reveal a ZHP-4 function at designated CO sites where it is required to stabilize pro-crossover factors at the late crossover intermediate, which in turn are required for the transition to a chiasma that is required for bivalent remodelling. Our study reveals an essential requirement for ZHP-4 in negotiating both the formation of COs and their ability to transition to structures capable of directing accurate chromosome segregation. We propose that ZHP-4 acts in concert with ZHP-3 to propel interhomolog JMs along the crossover pathway by stabilizing pro-CO factors that associate with early and late intermediates, thereby protecting designated crossovers as they transition into the chiasmata required for disjunction.


Assuntos
Segregação de Cromossomos/genética , Troca Genética/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/genética , Estruturas Cromossômicas/metabolismo , Troca Genética/fisiologia , Proteínas de Ligação a DNA/genética , Meiose , Complexo Sinaptonêmico/metabolismo
11.
PLoS Genet ; 14(6): e1007453, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879106

RESUMO

Homologous recombination is essential for crossover (CO) formation and accurate chromosome segregation during meiosis. It is of considerable importance to work out how recombination intermediates are processed, leading to CO and non-crossover (NCO) outcome. Genetic analysis in budding yeast and Caenorhabditis elegans indicates that the processing of meiotic recombination intermediates involves a combination of nucleases and DNA repair enzymes. We previously reported that in C. elegans meiotic joint molecule resolution is mediated by two redundant pathways, conferred by the SLX-1 and MUS-81 nucleases, and by the HIM-6 Bloom helicase in conjunction with the XPF-1 endonuclease, respectively. Both pathways require the scaffold protein SLX-4. However, in the absence of all these enzymes, residual processing of meiotic recombination intermediates still occurs and CO formation is reduced but not abolished. Here we show that the LEM-3 nuclease, mutation of which by itself does not have an overt meiotic phenotype, genetically interacts with slx-1 and mus-81 mutants, the respective double mutants displaying 100% embryonic lethality. The combined loss of LEM-3 and MUS-81 leads to altered processing of recombination intermediates, a delayed disassembly of foci associated with CO designated sites, and the formation of univalents linked by SPO-11 dependent chromatin bridges (dissociated bivalents). However, LEM-3 foci do not colocalize with ZHP-3, a marker that congresses into CO designated sites. In addition, neither CO frequency nor distribution is altered in lem-3 single mutants or in combination with mus-81 or slx-4 mutations. Finally, we found persistent chromatin bridges during meiotic divisions in lem-3; slx-4 double mutants. Supported by the localization of LEM-3 between dividing meiotic nuclei, this data suggest that LEM-3 is able to process erroneous recombination intermediates that persist into the second meiotic division.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Segregação de Cromossomos/genética , Endodesoxirribonucleases/genética , Meiose/genética , Reparo de DNA por Recombinação/genética , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Troca Genética/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Feminino , Mutação , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/genética
12.
J Cell Biol ; 215(6): 753-756, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27974481

RESUMO

Assaults to our DNA take place at a high frequency and are incompatible with life. In this issue, Lawrence et al. (2016. J. Cell Biol https://doi.org/10.1083/jcb.201604112) demonstrate that a novel complex links the nucleus with cytoplasmic microtubules for the promotion of DNA repair by homologous recombination.


Assuntos
Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Biológicos
13.
Genetics ; 203(2): 733-48, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27098914

RESUMO

SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1, and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via C-terminal SUN-KASH domains to form the linker of nucleoskeleton and cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes mediate numerous biological processes by connecting chromatin with the cytoplasmic force-generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled-coil domain makes SUN-1 sensitive to unilateral force exposure across the nuclear membrane. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in its absence.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Nuclear/metabolismo , Oogônios/metabolismo , Multimerização Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Meiose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética
14.
Elife ; 5: e10851, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26841696

RESUMO

Wapl induces cohesin dissociation from DNA throughout the mitotic cell cycle, modulating sister chromatid cohesion and higher-order chromatin structure. Cohesin complexes containing meiosis-specific kleisin subunits govern most aspects of meiotic chromosome function, but whether Wapl regulates these complexes remains unknown. We show that during C. elegans oogenesis WAPL-1 antagonizes binding of cohesin containing COH-3/4 kleisins, but not REC-8, demonstrating that sensitivity to WAPL-1 is dictated by kleisin identity. By restricting the amount of chromosome-associated COH-3/4 cohesin, WAPL-1 controls chromosome structure throughout meiotic prophase. In the absence of REC-8, WAPL-1 inhibits COH-3/4-mediated cohesion, which requires crossover-fated events formed during meiotic recombination. Thus, WAPL-1 promotes functional specialization of meiotic cohesin: WAPL-1-sensitive COH-3/4 complexes modulate higher-order chromosome structure, while WAPL-1-refractory REC-8 complexes provide stable cohesion. Surprisingly, a WAPL-1-independent mechanism removes cohesin before metaphase I. Our studies provide insight into how meiosis-specific cohesin complexes are regulated to ensure formation of euploid gametes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Estruturas Cromossômicas , Meiose , Animais , Caenorhabditis elegans , Proteínas de Ciclo Celular/antagonistas & inibidores , Coesinas
15.
Dev Cell ; 31(4): 503-11, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25455309

RESUMO

Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico/genética , Meiose/fisiologia , Transdução de Sinais/fisiologia , Complexo Sinaptonêmico/metabolismo , Animais , Caenorhabditis elegans/citologia , Segregação de Cromossomos/fisiologia , Transdução de Sinais/genética
16.
Genes Dev ; 28(7): 783-96, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24696457

RESUMO

Piwi-interacting RNAs (piRNA) are small regulatory RNAs with essential roles in maintaining genome integrity in animals and protists. Most Caenorhabditis elegans piRNAs are transcribed from two genomic clusters that likely contain thousands of individual transcription units; however, their biogenesis is not understood. Here we identify and characterize prde-1 (piRNA silencing-defective) as the first essential C. elegans piRNA biogenesis gene. Analysis of prde-1 provides the first direct evidence that piRNA precursors are 28- to 29-nucleotide (nt) RNAs initiating 2 nt upstream of mature piRNAs. PRDE-1 is a nuclear germline-expressed protein that localizes to chromosome IV. PRDE-1 is required specifically for the production of piRNA precursors from genomic loci containing an 8-nt upstream motif, the Ruby motif. The expression of a second class of motif-independent piRNAs is unaffected in prde-1 mutants. We exploited this finding to determine the targets of the motif-independent class of piRNAs. Together, our data provide new insights into both the biogenesis and function of piRNAs in gene regulation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , RNA Interferente Pequeno/biossíntese , Motivos de Aminoácidos , Animais , Cromossomos/genética , Fertilidade/genética , Células Germinativas/fisiologia , Mutação , Estabilidade de RNA/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
17.
Proc Natl Acad Sci U S A ; 109(9): 3440-5, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331911

RESUMO

Introduction of multiple copies of a germ-line-expressed gene elicits silencing of the corresponding endogenous gene during Caenorhabditis elegans oogenesis; this process is referred to as germ-line cosuppression. Transformed plasmids assemble into extrachromosomal arrays resembling extra minichromosomes with repetitive structures. Loss of the transgene extrachromosomal array leads to reversion of the silencing phenomenon. Cosuppression and RNAi depend upon some of the same genes. In the C. elegans germ line, about half the cells undergo a physiological programmed cell death that shares most genetic requirements with somatic apoptosis. In addition, apoptosis is stimulated by DNA damage and synaptic failure mediated through different apoptotic checkpoints. We found that both germ-line cosuppression and RNAi of germ-line-expressed genes enhance apoptosis during C. elegans oogenesis. In contrast, apoptosis is not enhanced by extrachromosomal arrays carrying genes not driven by germ-line-specific promoters that thus do not elicit transgene-mediated cosuppression/silencing. Similarly, introduction of doubled-stranded RNA that shares no homology with endogenous genes has no effect on apoptosis. "Silencing-induced apoptosis" is dependent upon sir-2.1 and cep-1 (the worm p53 ortholog), and is accompanied by a rise in RAD-51 foci, a marker for ongoing DNA repair, indicating induction of DNA double-strand breaks. This finding suggests that the DNA damage-response pathway is involved. RNAi and cosuppression have been postulated as defense mechanisms against genomic intruders. We speculate that the mechanism here described may trigger the elimination of germ cells that have undergone viral infection or transposon activation.


Assuntos
Apoptose/genética , Caenorhabditis elegans/genética , Interferência de RNA , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/fisiologia , Reparo do DNA , Herança Extracromossômica , Dosagem de Genes , Células Germinativas/patologia , Mutação em Linhagem Germinativa , Meiose/genética , Mutagênese Insercional , Plasmídeos/genética , RNA de Cadeia Dupla/genética , Rad51 Recombinase/fisiologia , Sirtuínas/fisiologia , Transgenes , Proteína Supressora de Tumor p53/fisiologia
18.
Mol Cell ; 39(1): 25-35, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20598602

RESUMO

Fanconi anemia (FA) is a complex cancer susceptibility disorder associated with DNA repair defects and infertility, yet the precise function of the FA proteins in genome maintenance remains unclear. Here we report that C. elegans FANCD2 (fcd-2) is dispensable for normal meiotic recombination but is required in crossover defective mutants to prevent illegitimate repair of meiotic breaks by nonhomologous end joining (NHEJ). In mitotic cells, we show that DNA repair defects of C. elegans fcd-2 mutants and FA-deficient human cells are significantly suppressed by eliminating NHEJ. Moreover, NHEJ factors are inappropriately recruited to sites of replication stress in the absence of FANCD2. Our findings are consistent with the interpretation that FA results from the promiscuous action of NHEJ during DNA repair. We propose that a critical function of the FA pathway is to channel lesions into accurate, as opposed to error-prone, repair pathways.


Assuntos
Reparo do DNA/genética , Anemia de Fanconi/genética , Recombinação Genética , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Troca Genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Proteína Quinase Ativada por DNA/metabolismo , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Meiose/genética , Mutação/genética , Rad51 Recombinase/metabolismo , Estresse Fisiológico
19.
EMBO Rep ; 9(3): 287-92, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18219312

RESUMO

The breast and ovarian cancer susceptibility protein BRCA1 is evolutionarily conserved and functions in DNA double-strand break (DSB) repair through homologous recombination, but its role in meiosis is poorly understood. By using genetic analysis, we investigated the role of the Caenorhabditis elegans BRCA1 orthologue (brc-1) during meiotic prophase. The null mutant in the brc-1 gene is viable, fertile and shows the wild-type complement of six bivalents in most diakinetic nuclei, which is indicative of successful crossover recombination. However, brc-1 mutants show an abnormal increase in apoptosis and RAD-51 foci at pachytene that are abolished by loss of spo-11 function, suggesting a defect in meiosis rather than during premeiotic DNA replication. In genetic backgrounds in which chiasma formation is abrogated, such as him-14/MSH4 and syp-2, loss of brc-1 leads to chromosome fragmentation suggesting that brc-1 is dispensable for crossing over but essential for DSB repair through inter-sister recombination.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Troca Genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Meiose , Animais , Apoptose , Caenorhabditis elegans/enzimologia , Perda do Embrião , Endodesoxirribonucleases , Esterases/metabolismo , Indóis , Prófase Meiótica I , Mutação/genética , Rad51 Recombinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...